Imaging and printing in plastic and reconstructive surgery part 2: emerging techniques

Main Article Content

Michael P Chae
David J Hunter-Smith
Warren M Rozen

Keywords

reconstructive surgical procedures, virtual reality, machine learning, decision making, imaging, printing

Abstract

Background: In the second of a two-part series, we evaluate emerging three-dimensional (3D) imaging and printing techniques based on computed tomography angiography (CT) and magnetic resonance angiography (MRA) for use in plastic and reconstructive surgery.


Method: A review of the published English literature dating from 1950 to 2017 was taken using databases such as PubMed, MEDLINE®, Web of Science and EMBASE.


Results: Image-guided navigation systems using fiducial markers have demonstrated utility in numerous surgical disciplines, including perforator-based flap surgery. However, these systems have largely been superseded by augmented reality (AR) and virtual reality (VR) technologies with superior convenience and speed. With the added benefit of tactile feedback, holograms also appear promising but have yet to be developed beyond the prototypic stage. Aided by a growing volume of digitalised clinical data, machine learning (ML) poses significant benefits for future image-based decision-making processes.


Conclusion: Most studies of image-guided navigation systems, AR, VR, holograms and ML have been presented in small case series and they remain to be analysed using outcomes-based validation studies. However, together they illustrate an exciting future where clinicians will be armed with intuitive technologies for surgical planning and guidance.

Metrics

Metrics Loading ...
Abstract 203 | PDF Downloads 60 HTML Downloads 70

References

1. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging applications of bedside 3D printing in plastic surgery. Front Surg. 2015;2:25. https://doi.org/10.3389/fsurg.2015.00025 PMid:26137465 PMCid:PMC4468745
2. Pratt GF, Rozen WM, Chubb D, Ashton MW, Alonso-Burgos A, Whitaker IS. Preoperative imaging for perforator flaps in reconstructive surgery: a systematic review of the evidence for current techniques. Ann Plast Surg. 2012;69:3-9. https://doi.org/10.1097/SPA.0b013e318222b7b7 PMid:22627495
3. Smit JM, Dimopoulou A, Liss AG, Zeebregts CJ, Kildal M, Whitaker IS, Magnusson A, Acosta R. Preoperative CT angiography reduces surgery time in perforator flap reconstruction. J Plast Reconstr Aesthet Surg. 2009;62:1112-117. https://doi.org/10.1016/j.bjps.2007.12.090 PMid:18675605
4. Rozen WM, Anavekar NS, Ashton MW, Stella DL, Grinsell D, Bloom RJ, Taylor GI. Does the preoperative imaging of perforators with CT angiography improve operative outcomes in breast reconstruction? Microsurgery. 2008;28:516-23. https://doi.org/10.1002/micr.20526 PMid:18683872
5. Masia J, Clavero JA, Larranaga JR, Alomar X, Pons G, Serret P. Multidetector-row computed tomography in the planning of abdominal perforator flaps. J Plast Reconstr Aesthet Surg. 2006;59:594-99. https://doi.org/10.1016/j.bjps.2005.10.024 PMid:16716952
6. Alonso-Burgos A, Garcia-Tutor E, Bastarrika G, Cano D, Martinez-Cuesta A, Pina LJ. Preoperative planning of deep inferior epigastric artery perforator flap reconstruction with multislice-CT angiography: imaging findings and initial experience. J Plast Reconstr Aesthet Surg. 2006;59:585-93. https://doi.org/10.1016/j.bjps.2005.12.011 PMid:16716951
7. Masia J, Kosutic D, Cervelli D, Clavero JA, Monill JM, Pons G. In search of the ideal method in perforator mapping: noncontrast magnetic resonance imaging. J Reconstr Microsurg. 2010;26:29-35. https://doi.org/10.1055/s-0029-1238222 PMid:19890807
8. Rozen WM, Stella DL, Bowden J, Taylor GI, Ashton MW. Advances in the pre-operative planning of deep inferior epigastric artery perforator flaps: magnetic resonance angiography. Microsurgery. 2009;29:119-23. https://doi.org/10.1002/micr.20590 PMid:19021232
9. Centre for Evidence-Based Medicine. OCEBM levels of evidence [PDF on internet] Oxford, United Kingdom: CEBM [Updated 1 May 2016
10. Iseki H, Kawamura H, Tanikawa T, Kawabatake H, Taira T, Takakura K, Dohi T, Hata N. An image-guided stereotactic system for neurosurgical operations. Stereotact Funct Neurosurg. 1994;63:130-38. https://doi.org/10.1159/000100304 PMid:7624623
11. Unsgaard G, Ommedal S, Rygh OM, Lindseth F. Operation of arteriovenous malformations assisted by stereoscopic navigation-controlled display of preoperative magnetic resonance angiography and intraoperative ultrasound angiography. Neurosurgery. 2007;61:407-15; discussion 415-06.
12. Jensen RL, Stone JL, Hayne R. Use of the Horsley-Clarke stereotactic frame in humans. Stereotact Funct Neurosurg. 1995;65:194-97. https://doi.org/10.1159/000098694 PMid:8916353
13. Woerdeman PA, Willems PW, Noordmans HJ, Tulleken CA, van der Sprenkel JW. Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods. J Neurosurg. 2007;106:1012-016. https://doi.org/10.3171/jns.2007.106.6.1012 PMid:17564173
14. West JB, Fitzpatrick JM, Toms SA, Maurer CR Jr, Maciunas RJ. Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 2001;48:810-16; discussion 816-17. PMid:11322441
15. Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seifert V. Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery. 2002;50:797-801. https://doi.org/10.1097/00006123-200204000-00021 PMid:11904031
16. Quinones-Hinojosa A, Ware ML, Sanai N, McDermott MW. Assessment of image guided accuracy in a skull model: comparison of frameless stereotaxy techniques vs. frame-based localization. J Neurooncol. 2006;76:65-70. https://doi.org/10.1007/s11060-005-2915-z PMid:16132501
17. Spivak CJ, Pirouzmand F. Comparison of the reliability of brain lesion localization when using traditional and stereotactic image-guided techniques: a prospective study. J Neurosurg. 2005;103:424-27. https://doi.org/10.3171/jns.2005.103.3.0424 PMid:16235672
18. Papadopoulos EC, Girardi FP, Sama A, Sandhu HS, Cammisa FP Jr. Accuracy of single-time, multilevel registration in image-guided spinal surgery. Spine J. 2005;5:263-67; discussion 268. https://doi.org/10.1016/j.spinee.2004.10.048 PMid:15863081
19. Kraus MD, Dehner C, Riepl C, Scholl H, Gebhard F. A novel method of image-based navigation in fracture surgery. Arch Orthop Trauma Surg. 2012;132:741-50. https://doi.org/10.1007/s00402-012-1471-1 PMid:22350052
20. Weissler JM, Sosin M, Dorafshar AH, Garcia JR. Combining Virtual surgical planning, intraoperative navigation, and 3-dimensional printing in prosthetic-based bilateral microtia reconstruction. J Oral Maxillofac Surg. 2017;75:1491-497. https://doi.org/10.1016/j.joms.2016.12.037 PMid:28137637
21. Klapan I, Vranjes Z, Risavi R, Simicic L, Prgomet D, Glusac B. Computer-assisted surgery and computer-assisted telesurgery in otorhinolaryngology. Ear Nose Throat J. 2006;85:318-21. PMid:16771024
22. de Lambert A, Esneault S, Lucas A, Haigron P, Cinquin P, Magne JL. Electromagnetic tracking for registration and navigation in endovascular aneurysm repair: a phantom study. Eur J Vasc Endovasc Surg. 2012;43:684-89. https://doi.org/10.1016/j.ejvs.2012.03.007 PMid:22487781
23. Rozen WM, Buckland A, Ashton MW, Stella DL, Phillips TJ, Taylor GI. Image-guided, stereotactic perforator flap surgery: a prospective comparison of current techniques and review of the literature. Surg Radiol Anat. 2009;31:401-08. https://doi.org/10.1007/s00276-008-0457-8 PMid:19159056
24. Rozen WM, Ashton MW, Stell, DL, Phillips TJ, Taylor GI. Stereotactic image-guided navigation in the preoperative imaging of perforators for DIEP flap breast reconstruction. Microsurgery. 2008;28:417-423. https://doi.org/10.1002/micr.20511 PMid:18623155
25. Rozen WM, Ashton MW, Stella DL, Ferris S, White DC, Phillips TJ, Taylor GI. Developments in perforator imaging for the anterolateral thigh flap: CT angiography and CT-guided stereotaxy. Microsurgery. 2008;28:227-32. https://doi.org/10.1002/micr.20485 PMid:18335455
26. Ting JW, Rozen WM, Niumsawatt V, Baillieu C, Leung M, Leong JC. Developments in image-guided deep circumflex iliac artery flap harvest: a step-by-step guide and literature review. J Oral Maxillofac Surg. 2014;72:186-97. https://doi.org/10.1016/j.joms.2013.06.219 PMid:23993225
27. Durden F, Carruthers KH, Haran O, Kocak E. Intraoperative navigation-assisted identification of deep inferior epigastric artery perforators. Plast Reconstr Surg. 2012;129:880e-882e. https://doi.org/10.1097/PRS.0b013e31824a9f9f PMid:22544143
28. Chao AH, Weimer K, Raczkowsky J, Zhang Y, Kunze M, Cody D, Selber JC, Hanasono MM, Skoracki RJ. Pre-programmed robotic osteotomies for fibula free flap mandible reconstruction: a preclinical investigation. Microsurgery. 2016;36:246-49. https://doi.org/10.1002/micr.30013 PMid:26663239
29. Caudell TP, Mizell DW. Augmented reality: an application of heads-up display technology to manual manufacturing processes. In: Proceedings of the Twenty-Fifth International Conference on System Sciences. 1992 Jan 7-10 https://doi.org/10.1109/HICSS.1992.183317
30. Milgram P, Kishino F. A taxonomy of mixed reality visual displays. IEICE Transact on Info Syst. 1994;E77.
31. Mann S. Wearable computing: a first step toward personal imaging. IEEE Comput. 1997;30:25-32. https://doi.org/10.1109/2.566147
32. Pensieri C, Pennacchini M. Overview: virtual reality in medicine. J Virtual Worlds Res. 2014;7:1-34. https://doi.org/10.4101/jvwr.v7i1.6364
33. Arora S, Aggarwal R, Sirimanna P, Moran A, Grantcharov T, Kneebone R, Sevdalis N, Darzi A. Mental practice enhances surgical technical skills: a randomized controlled study. Ann Surg. 2011;253:265-70. https://doi.org/10.1097/SLA.0b013e318207a789 PMid:21245669
34. Sutton C, McCloy R, Middlebrook A, Chater P, Wilson M, Stone R. MIST VR. A laparoscopic surgery procedures trainer and evaluator. Stud Health Technol Inform. 1997;39:598-07. PMid:10173070
35. Hyltander A, Liljegren E, Rhodin PH, Lonroth H. The transfer of basic skills learned in a laparoscopic simulator to the operating room. Surg Endosc. 2002;16:1324-328. https://doi.org/10.1007/s00464-001-9184-5 PMid:11988802
36. Fairhurst K, Strickland A, Maddern G. The LapSim virtual reality simulator: promising but not yet proven. Surg Endosc. 2011;25:343-55. https://doi.org/10.1007/s00464-010-1181-0 PMid:20614142
37. Zeng B, Meng F, Ding H, Wang G. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation. Int J Comput Assist Radiol Surg. 2017;12(8):1355-368. https://doi.org/10.1007/s11548-017-1634-1 PMid:28664416
38. Murphy RJ, Liacouras PC, Grant GT, Wolfe KC, Armand M, Gordon CR. A craniomaxillofacial surgical assistance workstation for enhanced single-stage reconstruction using patient-specific implants. J Craniofac Surg. 2016;27:2025-030. https://doi.org/10.1097/SCS.0000000000003106 PMid:28005747
39. Marzano E, Piardi T, Soler L, Diana M, Mutter D, Marescaux J, Pessaux P. Augmented reality-guided artery-first pancreatico-duodenectomy. J Gastrointest Surg. 2013;17:1980-983. https://doi.org/10.1007/s11605-013-2307-1 PMid:23943389
40. Profeta AC, Schilling C, McGurk M. Augmented reality visualization in head and neck surgery: an overview of recent findings in sentinel node biopsy and future perspectives. Br J Oral Maxillofac Surg. 2016;54:694-96. https://doi.org/10.1016/j.bjoms.2015.11.008 PMid:26809235
41. Tagaya N, Aoyagi H, Nakagawa A, Abe A, Iwasaki Y, Tachibana M, Kubota K. A novel approach for sentinel lymph node identification using fluorescence imaging and image overlay navigation surgery in patients with breast cancer. World J Surg. 2011;35:154-58. https://doi.org/10.1007/s00268-010-0811-y PMid:20931198
42. Kim Y, Kim H, Kim YO. Virtual reality and augmented reality in plastic surgery: a review. Arch Plast Surg. 2017;44:179-87. https://doi.org/10.5999/aps.2017.44.3.179 PMid:28573091 PMCid:PMC5447526
43. Hummelink S, Verhulst AC, Maal TJJ, Hoogeveen YL, Schultze Kool LJ, Ulrich DJ. O. An innovative method of planning and displaying flap volume in DIEP flap breast reconstructions. J Plast Reconstr Aesthet Surg. 2017;70:871-875. https://doi.org/10.1016/j.bjps.2017.04.008 PMid:28528800
44. Hummelink S, Schultze Kool LJ, Ulrich DJ. Displaying inguinal lymph nodes before transplantation in a deep inferior epigastric perforator flap breast reconstruction using an innovative projection method. J Plast Reconstr Aesthet Surg. 2016;69:376-80. https://doi.org/10.1016/j.bjps.2015.10.041 PMid:26620253
45. Hummelink S, Hameeteman M, Hoogeveen Y, Slump CH, Ulrich DJ, Schultze Kool LJ. Preliminary results using a newly developed projection method to visualize vascular anatomy prior to DIEP flap breast reconstruction. J Plast Reconstr Aesthet Surg. 2015; 68(3):390-394. https://doi.org/10.1016/j.bjps.2014.11.006 PMid:25498828
46. Sotsuka Y, Matsuda K, Fujita K, Fujiwara T, Kakibuchi M. Image overlay of deep inferior epigastric artery in breast reconstruction. Plast Reconstr Surg Glob Open. 2014;2:e235. https://doi.org/10.1097/GOX.0000000000000210 PMid:25426352 PMCid:PMC4236380
47. 4Jiang T, Zhu M, Zan T, Gu B, Li Q. A novel augmented reality-based navigation system in perforator flap transplantation: a feasibility study. Ann Plast Surg. 2017;79:192-96. https://doi.org/10.1097/SAP.0000000000001078 PMid:28509695
48. Gan Q, Wang D, Ye J, Zhang Z, Wang X, Hu C, Shao P, Zu RX. Benchtop and animal validation of a projective imaging system for potential use in intraoperative surgical guidance. PLoS One. 2016;11:e0157794. https://doi.org/10.1371/journal.pone.0157794 PMid:27391764 PMCid:PMC4938571
49. Mela CA, Papay FA, Liu Y. Intraoperative fluorescence imaging and multimodal surgical navigation using goggle system. Methods Mol Biol. 2016;1444:85-95. https://doi.org/10.1007/978-1-4939-3721-9_9 PMid:27283420
50. Liu Y, Bauer AQ, Akers WJ, Sudlow G, Liang K, Shen D, Berezin MY, Culver JP, Achilefu S. Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery. Surgery. 2011;149:689-98. https://doi.org/10.1016/j.surg.2011.02.007 PMid:21496565 PMCid:PMC3079879
51. Rahman OF, Nahabedian MY, Sinkin JC. Augmented reality and wearable technology in image-guided navigation and preoperative planning. Plast Reconstr Surg Glob Open. 2016;4:e1057. https://doi.org/10.1097/GOX.0000000000001057 PMid:27757359 PMCid:PMC5055025
52. Peregrin T. Surgeons see future applications for Google Glass. Bull Am Coll Surg. 2014;99:9-16. PMid:25076735
53. Berger AJ, Gaster RS, Lee GK. Development of an affordable system for personalized video-documented surgical skill analysis for surgical residency training. Ann Plast Surg. 2013;70:442-46. https://doi.org/10.1097/SAP.0b013e31827e513c PMid:23486125
54. Sinkin JC, Rahman OF, Nahabedian MY. Google Glass in the operating room: the plastic surgeon’s perspective. Plast Reconstr Surg. 2016;138:298-02. https://doi.org/10.1097/PRS.0000000000002307 PMid:27348661
55. Bilton N. Why Google Glass broke [Internet]. New York: The New York Times. 4 February 2015 [Cited 12 February 2019]. Available from: https://www.nytimes.com/2015/02/05/style/why-google-glass-broke.html.
56. Vohl D, Barnes DG, Fluke CJ, Poudel G, Georgiou-Karistianis N, Hassan AH, Benovitski Y, Wong TH, Kaluza OL, Nguyen TD, Bonnington CP. Large-scale comparative visualisation of sets of multidimensional data. PeerJ Comp Sci. 2016;2:e88. https://doi.org/10.7717/peerj-cs.88
57. Hackett M. Medical holography for basic anatomy training. In: Proceedings of the Interservice/Industry Training, Simulation, and Education Conference; 2013 Dec 2-6; Orlando, Florida, USA. Arlington, Vancouver, USA: I/ITSEC 2013: Paper No 13207.
58. Makino Y, Furuyama Y, Inoue S, Shinoda H. HaptoClone (Haptic-Optical Clone) for mutual tele-environment by real-time 3D image transfer with midair force feedback. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems; 2016 May 7-12; San Jose, California, USA. New York, New York: ACM 2016: 1980-1990. https://doi.org/10.1145/2858036.2858481
59. Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature. 2015;521:452-59. https://doi.org/10.1038/nature14541 PMid:26017444
60. Obermeyer Z, Emanuel EJ. Predicting the future: big data, machine learning, and clinical medicine. N Engl J Med. 2016;375:1216-219. https://doi.org/10.1056/NEJMp1606181 PMid:27682033 PMCid:PMC5070532
61. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015;349:255-60. https://doi.org/10.1126/science.aaa8415 PMid:26185243
62. Metz C. AI is transforming Google search. The reset of the web is next [Internet]. San Francisco, California, United States: Wired, 2 April 2016 [Cited 12 February 2019]. Available from: https://www.wired.com/2016/02/ai-is-changing-the-technology-behind-google-searches/.
63. Siri Team. Deep learning for Siri’s voice: on-device deep mixture density networks for hybrid unit selection synthesis. Apple Machine Learning J. 2017;1(4).
64. Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309:1351-352. https://doi.org/10.1001/jama.2013.393 PMid:23549579
65. Meyfroidt G, Guiza F, Ramon J, Bruynooghe M. Machine learning techniques to examine large patient databases. Best Pract Res Clin Anaesthesiol. 2009;23:127-43. https://doi.org/10.1016/j.bpa.2008.09.003 PMid:19449621
66. Deo RC. Machine learning in medicine. Circulation 2015;132:1920-930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593 PMid:26572668 PMCid:PMC5831252
67. Furnkranz J, Gamberger D, Lavrac N. Foundations of rule learning. Heidelberg, Germany: Springer, 2012. https://doi.org/10.1007/978-3-540-75197-7
68. Waschkowski F, Hesse S, Rieck AC Lohmann T, Brockmann C, Laube T, Bornfeld N, Thumann G, Walter P1, Mokwa W, Johnen S, Roessler G. Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomed Eng Online. 2014;13(1):11. https://doi.org/10.1186/1475-925X-13-11 PMid:24502253 PMCid:PMC3976033
69. Imhoff M, Kuhls S. Alarm algorithms in critical care monitoring. Anesth Analg. 2006;102:1525-537. https://doi.org/10.1213/01.ane.0000204385.01983.61 PMid:16632837
70. Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M. Big data and machine learning in plastic surgery: a new frontier in surgical innovation. Plast Reconstr Surg. 2016;137:890e-97e. https://doi.org/10.1097/PRS.0000000000002088 PMid:27119951
71. Safran T, Viezel-Mathieu A, Corban J, Kanevsky A, Thibaudeau S, Kanevsky J. Machine learning and melanoma: the future of screening. J Am Acad Dermatol. 2018; 78(3):620-21. https://doi.org/10.1016/j.jaad.2017.09.055 PMid:28989109
72. Rajpara SM, Botello AP, Townend J, Ormerod AD. Systematic review of dermoscopy and digital dermoscopy/artificial intelligence for the diagnosis of melanoma. Br J Dermatol. 2009;161:591-04. https://doi.org/10.1111/j.1365-2133.2009.09093.x PMid:19302072
73. Mendoza CS, Safdar N, Okada K, Myers E, Rogers GF, Linguraru MG. Personalized assessment of craniosynostosis via statistical shape modeling. Med Image Anal. 2014;18:635-46. https://doi.org/10.1016/j.media.2014.02.008 PMid:24713202
74. Yeong EK, Hsiao TC, Chiang HK, Lin CW. Prediction of burn healing time using artificial neural networks and reflectance spectrometer. Burns. 2005;31:415-20. https://doi.org/10.1016/j.burns.2004.12.003 PMid:15896502
75. Kiranantawat K, Sitpahul N, Taeprasartsit P, Constantinides J, Kruavit A, Srimuninnimit V, Punyahotra N, Chatdokmaiprai C, Numhom S. The first smartphone application for microsurgery monitoring: SilpaRamanitor. Plast Reconstr Surg. 2014;134:130-39. https://doi.org/10.1097/PRS.0000000000000276 PMid:25028822
76. Conforth M, Meng Y, Valmikinathan C, Xiaojun Y. Nerve graft selection for peripheral nerve regeneration using neural networks trained by a hybrid ACO/PSO method. In: Proceedings of the 6th Annual IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology; 2009 30 Mar-2 Apr; Nashville, Tennessee, USA: CIBCB Press 2009:208-14. https://doi.org/10.1109/CIBCB.2009.4925730
77. Gunes H, Piccardi M. Assessing facial beauty through proportion analysis by image processing and supervised learning. Int J Hum-Comput St. 2006;64:1184-199. https://doi.org/10.1016/j.ijhcs.2006.07.004
78. Chae MP, Hunter-Smith DJ, Chung RD, Smith JA, Rozen WM. 3D-printed, patient-specific, DIEP template for preoperative planning autologous breast reconstruction: prospective case series in 20 patients. Microsurgery. Forthcoming. 2019.
79. Chae MP, Hunter-Smith DJ, Rostek M, Smith JA, Rozen WM. Enhanced Preoperative deep inferior epigastric artery perforator flap planning with a 3D-printed perforasome template: technique and case report. Plast Reconstr Surg Glob Open. 2018;6:e1644. https://doi.org/10.1097/GOX.0000000000001644 PMid:29464169 PMCid:PMC5811299
80. Chae MP, Ganhewa D, Hunter-Smith DJ, Rozen WM. Direct augmented reality computed tomographic angiography technique (ARC): an innovation in preoperative imaging. Eur J Plast Surg. 2018;41:415-20. https://doi.org/10.1007/s00238-018-1395-2