Imaging and printing in plastic and reconstructive surgery part 1: established techniques

Main Article Content

Michael P Chae, Dr
David J Hunter-Smith, A/Prof
Warren Matthew Rozen

Keywords

image processing, 3D printing, plastic and reconstructive surgery, CTA, MRA

Abstract

Background: An increasing number of reconstructive surgeons are using modern imaging technologies for preoperative planning and intraoperative surgical guidance. Conventional imaging modalities such as CT and MRI are relatively affordable and widely accessible and offer powerful functionalities. In the first of a two-part series, we evaluate established three-dimensional (3D) imaging and printing techniques based on CT and MRI used in plastic and reconstructive surgery.


Method: A review of the published English literature dating from 1950 to 2017 was taken using databases such as PubMed, MEDLINE®, Web of Science and EMBASE.


Result: In plastic and reconstructive surgery, the most commonly used, free software platforms are 3D Slicer (Surgical Planning Laboratory, Boston, MA, USA) and OsiriX (Pixmeo, Geneva, Switzerland). Perforator mapping using 3D-reconstructed images from computed tomography angiography (CTA) and magnetic resonance angiography (MRA) is commonly used for preoperative planning. Three-dimensional volumetric analysis using current software techniques remains labour-intensive and reliant on operator experience. Three-dimensional printing has been investigated extensively since its introduction. As more free open-source software suites and affordable 3D printers become available, 3D printing is becoming more accessible for clinicians.


Conclusion: Numerous studies have explored the application of 3D-rendered conventional imaging modalities for perforator mapping, volumetric analysis and printing. However, there is a lack of comprehensive review of all established 3D imaging and printing techniques in a language suitable for clinicians.

Downloads

Download data is not yet available.
Abstract 133 | PDF Downloads 28 HTML Downloads 27

References

1. Saint-Cyr M, Schaverien MV, Rohrich RJ. Perforator flaps: history, controversies, physiology, anatomy, and use in reconstruction. Plast Reconstr Surg. 2009;123(4):132e–45e.
2. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging applications of bedside 3D printing in plastic surgery. Front Surg. 2015;2:25.
3. Pratt GF, Rozen WM, Chubb D, Ashton MW, Alonso-Burgos A, Whitaker IS. Preoperative imaging for perforator flaps in reconstructive surgery: a systematic review of the evidence for current techniques. Ann Plast Surg. 2012;69(1):3–9.
4. Smit JM, Dimopoulou A, Liss AG, Zeebregts CJ, Kildal M, Whitaker IS, Magnusson A, Acosta R. Preoperative CT angiography reduces surgery time in perforator flap reconstruction. J Plast Reconstr Aesthet Surg. 2009;62(9):1112–117.
5. Rozen WM, Anavekar NS, Ashton MW, Stella DL, Grinsell D, Bloom RJ, Taylor GI. Does the preoperative imaging of perforators with CT angiography improve operative outcomes in breast reconstruction? Microsurgery. 2008;28(7):516–23.
6. Masia J, Clavero JA, Larranaga JR, Alomar X, Pons G, Serret P. Multidetector-row computed tomography in the planning of abdominal perforator flaps. J Plast Reconstr Aesthet Surg. 2006;59(6):594–99.
7. Alonso-Burgos A, Garcia-Tutor E, Bastarrika G, Cano D, Martinez-Cuesta A, Pina LJ. Preoperative planning of deep inferior epigastric artery perforator flap reconstruction with multislice-CT angiography: imaging findings and initial experience. J Plast Reconstr Aesthet Surg. 2006;59(6):585–93.
8. Masia J, Kosutic D, Cervelli D, Clavero JA, Monill JM, Pons G. In search of the ideal method in perforator mapping: noncontrast magnetic resonance imaging. J Reconstr Microsurg. 2010;26(1):29–35.
9. Rozen WM, Stella DL, Bowden J, Taylor GI, Ashton MW. Advances in the pre-operative planning of deep inferior epigastric artery perforator flaps: magnetic resonance angiography. Microsurgery. 2009;29(2):119–23.
10. Clavero JA, Masia J, Larranaga J, Monill JM, Pons G, Siurana S, Alomar X. MDCT in the preoperative planning of abdominal perforator surgery for postmastectomy breast reconstruction. Am J Roentgenol. 2008;191(3):670–76.
11. Masia J, Larranaga J, Clavero JA, Vives L, Pons G, Pons JM. The value of the multidetector row computed tomography for the preoperative planning of deep inferior epigastric artery perforator flap: our experience in 162 cases. Ann Plast Surg. 2008;60(1):29–36.
12. Rozen WM, Ashton MW, Grinsell D, Stella DL, Phillips TJ, Taylor GI. Establishing the case for CT angiography in the preoperative imaging of abdominal wall perforators. Microsurgery. 2008;28(5):306–13.
13. Rosson GD, Williams CG, Fishman EK, Singh NK. 3D CT angiography of abdominal wall vascular perforators to plan DIEAP flaps. Microsurgery. 2007;27(8):641–46.
14. Rozen WM, Ashton MW, Stella DL, Phillips TJ, Taylor GI. Magnetic resonance angiography and computed tomographic angiography for free fibular flap transfer. J Reconstr Microsurg. 2008;24(6):457–58.
15. Cina A, Barone-Adesi L, Rinaldi P, Cipriani A, Salgarello M, Masetti R, Bonomo, L. Planning deep inferior epigastric perforator flaps for breast reconstruction: a comparison between multidetector computed tomography and magnetic resonance angiography. Eur Radiol. 2013;23(8):2333–343.
16. Aubry S, Pauchot J, Kastler A, Laurent O, Tropet Y, Runge M. Preoperative imaging in the planning of deep inferior epigastric artery perforator flap surgery. Skeletal Radiol. 2013;42(3):319–27.
17. Mathes DW, Neligan PC. Current techniques in preoperative imaging for abdomen-based perforator flap microsurgical breast reconstruction. J Reconstr Microsurg. 2010;26(1):3–10.
18. Neil-Dwyer JG, Ludman CN, Schaverien M, McCulley SJ, Perks AG. Magnetic resonance angiography in preoperative planning of deep inferior epigastric artery perforator flaps. J Plast Reconstr Aesthet Surg. 2009;62(12):1661–665.
19. Hartung MP, Grist TM, Francois CJ. Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson. 2011;13:19.
20. Pauchot J, Aubry S, Kastler A, Laurent O, Kastler B, Tropet Y. Preoperative imaging for deep inferior epigastric perforator flaps: a comparative study of computed tomographic angiography and magnetic resonance angiography. Eur J Plast Surg. 2012;35(11):795–801.
21. Greenspun D, Vasile J, Levine JL, Erhard H, Studinger R, Chernyak V, Newman T, Prince M, Allen RJ. Anatomic imaging of abdominal perforator flaps without ionizing radiation: seeing is believing with magnetic resonance imaging angiography. J Reconstr Microsurg. 2010;26(1):37–44.
22. Newman TM, Vasile J, Levine JL, Greenspun DT, Allen RJ, Chao MT, Winchester PA, Prince MR. Perforator flap magnetic resonance angiography for reconstructive breast surgery: a review of 25 deep inferior epigastric and gluteal perforator artery flap patients. J Magn Reson Imaging. 2010;31(5):1176–184.
23. Alonso-Burgos A, Garcia-Tutor E, Bastarrika G, Benito A, Dominguez PD, Zubieta JL. Preoperative planning of DIEP and SGAP flaps: preliminary experience with magnetic resonance angiography using 3-tesla equipment and blood-pool contrast medium. J Plast Reconstr Aesthet Surg. 2010;63(2):298–304.
24. Chernyak V, Rozenblit AM, Greenspun DT, Levine JL, Milikow DL, Chia FA, Erhard, HA. Breast reconstruction with deep inferior epigastric artery perforator flap: 3.0-T gadolinium-enhanced MR imaging for preoperative localization of abdominal wall perforators. Radiology. 2009;250(2):417–24.
25. Chae MP, Hunter-Smith DJ, Rozen WM. Comparative analysis of fluorescent angiography, computed tomographic angiography and magnetic resonance angiography for planning autologous breast reconstruction. Gland Surg. 2015;4(2):164–78.
26. Centre for Evidence-Based Medicine. OCEBM levels of evidence [PDF on internet] Oxford, United Kingdom: CEBM [Updated 1 May 2016; cited 1 October 2014]. Available from: https://www.cebm.net/2016/05/ocebm-levels-of-evidence/.
27. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323–341.
28. Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WE, Jolesz FA, Black PM, Wells WM III. An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging. 2001;13(6):967–75.
29. Yip SSF, Parmar C, Blezek D, Estepar RSJ, Pieper S, Kim J, Aerts H. Application of the 3D Slicer chest imaging platform segmentation algorithm for large lung nodule delineation. PLoS One. 2017;12(6):e0178944.
30. Hassanzadeh E, Alessandrino F, Olubiyi OI, Glazer DI, Mulkern RV, Fedorov A, Tempany CM, Fennessy FM. Comparison of quantitative apparent diffusion coefficient parameters with prostate imaging reporting and data system V2 assessment for detection of clinically significant peripheral zone prostate cancer. Abdom Radiol (NY). 2018;43(5):1237–244.
31. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17(3):205–16.
32. Vogel WV, Oyen WJ, Barentsz JO, Kaanders JH, Corstens FH. PET/CT: panacea, redundancy, or something in between? J Nucl Med. 2004;45 Suppl 1:15S–24S.
33. Flohr T, Ohnesorge B, Bruder H, Stierstorfer K, Simon J, Suess C et al. Image reconstruction and performance evaluation for ECG-gated spiral scanning with a 16-slice CT system. Med Phys. 2003;30(10):2650–662.
34. Tepper OM, Karp NS, Small K, Unger J, Rudolph L, Pritchard, Choi M. Three-dimensional imaging provides valuable clinical data to aid in unilateral tissue expander-implant breast reconstruction. Breast J. 2008;14(6):543–50.
35. Hudson DA. Factors determining shape and symmetry in immediate breast reconstruction. Ann Plast Surg. 2004;52(1):15–21.
36. Kovacs L, Zimmermann A, Papadopulos NA, Biemer E. Re: factors determining shape and symmetry in immediate breast reconstruction. Ann Plast Surg. 2004;53(2):192–94.
37. Lee HY, Hong K, Kim EA. Measurement protocol of women’s nude breasts using a 3D scanning technique. Appl Ergon. 2004;35(4):353–59.
38. Galdino GM, Nahabedian M, Chiaramonte M, Geng JZ, Klatsky S, Manson P. Clinical applications of three-dimensional photography in breast surgery. Plast Reconstr Surg. 2002;110(1):58–70.
39. Eder M, Raith S, Jalali J, Muller D, Harder Y, Dobritz M, Papadopulos NA, Machens HG, Kovacs L. Three-dimensional prediction of free-flap volume in autologous breast reconstruction by CT angiography imaging. Int J Comput Assist Radiol Surg. 2014;9(4):541–49.
40. Eric M, Anderla A, Stefanovic D, Drapsin M. Breast volume estimation from systematic series of CT scans using the Cavalieri principle and 3D reconstruction. Int J Surg. 2014;12(9):912–17.
41. Rha EY, Choi IK, Yoo G. Accuracy of the method for estimating breast volume on three-dimensional simulated magnetic resonance imaging scans in breast reconstruction. Plast Reconstr Surg. 2014;133(1):14–20.
42. Kim H, Lim SY, Pyon JK, Bang SI, Oh KS, Mun GH. Preoperative computed tomographic angiography of both donor and recipient sites for microsurgical breast reconstruction. Plast Reconstr Surg. 2012;130(1):11e–20e.
43. Rosson GD, Shridharani SM, Magarakis M, Manahan MA, Stapleton SM, Gilson MM, Flores JI, Basdag B, Fishman E. Three-dimensional computed tomographic angiography to predict weight and volume of deep inferior epigastric artery perforator flap for breast reconstruction. Microsurgery. 2011;31(7):510–16.
44. Herold C, Reichelt A, Stieglitz LH, Dettmer S, Knobloch K, Lotz J, Vogt PM. MRI-based breast volumetry-evaluation of three different software solutions. J Digit Imaging. 2010;23(5):603–10.
45. Bulstrode N, Bellamy E, Shrotria S. Breast volume assessment: comparing five different techniques. Breast. 2001;10(2):117–23.
46. Lee KT, Mun GH. Volumetric planning using computed tomographic angiography improves clinical outcomes in DIEP flap breast reconstruction. Plast Reconstr Surg. 2016;137(5):771e–780e.
47. Chae MP, Ramakrishnan V, Hunter-Smith DJ, Rozen WM. The extended DIEP flap. In: Shiffman M, editor. Breast Reconstruction: Art, Science, and New Clinical Techniques. Heidelberg, Germany: Springer, 2016.
48. Kim H, Mun GH, Wiraatmadja ES, Lim SY, Pyon JK, Oh KS, Lee JE, Nam SJ, Bang SI. Preoperative magnetic resonance imaging-based breast volumetry for immediate breast reconstruction. Aesthetic Plast Surg. 2015;39(3):369–76.
49. Fowler PA, Casey CE, Cameron GG, Foster MA, Knight CH. Cyclic changes in composition and volume of the breast during the menstrual cycle, measured by magnetic resonance imaging. Br J Obstet Gynaecol. 1990;97(7):595–02.
50. Chae MP, Hunter-Smith DJ, Spychal RT, Rozen WM. 3D volumetric analysis and haptic modeling for preoperative planning in breast reconstruction. Anaplastology. 2015;4(1):1–4.
51. Chae MP, Hunter-Smith DJ, Spychal RT, Rozen WM. 3D volumetric analysis for planning breast reconstructive surgery. Breast Cancer Res Treat. 2014;146(2):457–60.
52. Rha EY, Kim JM, Yoo G. Volume measurement of various tissues using the Image J software. J Craniofac Surg. 2015;26(6):e505–06.
53. Kamali P, Dean D, Skoracki R, Koolen PG, Paul MA, Ibrahim AM, Lin SJ. The current role of three-dimensional (3D) printing in plastic surgery. Plast Reconstr Surg. 2016 Jan 21 (Epub ahead of print].
54. Bauermeister AJ, Zuriarrain A, Newman MI. Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2016;77(5):569–76.
55. Ibrahim AM, Jose RR, Rabie AN, Gerstle TL, Lee BT, Lin SJ. Three-dimensional printing in developing countries. Plast Reconstr Surg Glob Open. 2015;3(7):e443.
56. Gerstle TL, Ibrahim AM, Kim PS, Lee BT, Lin SJ. A plastic surgery application in evolution: three-dimensional printing. Plast Reconstr Surg. 2014;133(2):446–51.
57. Sachs EM, Haggerty JS, Cima MJ, Williams PA, inventors. Three-dimensional printing techniques. United States patent US 5,204,055. 1993 April 20.
58. Hull CW, inventor. Method for production of three-dimensional objects by stereolithography. United States patent US 4,929,402. 1990 May 29.
59. Hull CW, inventor. Apparatus for production of three-dimensional objects by stereolithography. United States patent US 4,575,330. 1986 Mar 11.
60. Hoy MB. 3D printing: making things at the library. Med Ref Serv Q. 2013;32(1):93–99.
61. Levy GN, Schindel R, Kruth JP. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann-Manuf Techn. 2003;52(2):589–609.
62. Hieu LC, Zlatov N, Vander Sloten J, Bohez E, Khanh L, Binh PH, Oris P, Toshev Y. Medical rapid prototyping applications and methods. Assembly Autom. 2005;25(4):284–92.
63. Chae MP, Lin F, Spychal RT, Hunter-Smith DJ, Rozen WM. 3D-printed haptic ‘reverse’ models for preoperative planning in soft tissue reconstruction: a case report. Microsurgery. 2015;35(2):148–53.
64. Garcia-Tutor E, Romeo M, Chae MP, Hunter-Smith DJ, Rozen WM. 3D Volumetric modeling and microvascular reconstruction of irradiated lumbosacral defects after oncologic resection. Front Surg. 2016;3:66.
65. Mavili ME, Canter HI, Saglam-Aydinatay B, Kamaci S, Kocadereli I. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg. 2007;18(4):740–47.
66. Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5):661–66.
67. Watson RA. A low-cost surgical application of additive fabrication. J Surg Educ. 2014;71(1):14–17.
68. Olszewski R, Szymor P, Kozakiewicz M. Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer. J Craniomaxillofac Surg. 2014;42(8):1847–52.
69. Crump SS, inventor. Apparatus and method for creating three-dimensional objects. United States patent US 5,121,329. 1992 Jun 9.
70. Wang YT, Yu JH, Lo LJ, Hsu PH, Lin CL. Developing customized dental miniscrew surgical template from thermoplastic polymer material using image superimposition, CAD system, and 3D printing. Biomed Res Int. 2017;1906197.
71. Wang D, Wang Y, Wang J, Song C, Yang Y, Zhang Z, Lin H, Zhen Y, Liao S. Design and fabrication of a precision template for spine surgery using selective laser melting (SLM). Materials (Basel). 2016;9(7):E608.
72. Yang F, Chen C, Zhou Q, Gong Y, Li R, Li C, Klampfl F, Freund S, Wu X, Sun Y, Li X, Schmidt M, Ma D, Yu Y. Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: fabrication, biocompatibility analysis and photoelastic study. Sci Rep. 2017;7:45360.
73. Coelho G, Chaves TMF, Goes AF, Del Massa EC, Moraes O, Yoshida M. Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery. Childs Nerv Syst. 2017;34(4):749–56.
74. Chen X, Possel JK, Wacongne C, van Ham AF, Klink PC, Roelfsema PR. 3D printing and modelling of customized implants and surgical guides for non-human primates. J Neurosci Methods. 2017;286:38–55.
75. Egger J, Gall M, Tax A, Ucal M, Zefferer U, Li X et al. Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software. PLoS One. 2017;12(3):e0172694.
76. Skrzat J, Spulber A, Walocha J. Three-dimensional model of the skull and the cranial bones reconstructed from CT scans designed for rapid prototyping process. Folia Med Cracov. 2016;56(2):45–52.
77. Anderson JR, Thompson WL, Alkattan AK, Diaz O, Klucznik R, Zhang YJ et al. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models.
J Neurointerv Surg. 2016;8(5):517–20.
78. Ploch CC, Mansi C, Jayamohan J, Kuhl E. Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg. 2016;90:668–74.
79. Park EK, Lim JY, Yun IS, Kim JS, Woo SH, Kim DS, Shim KW. Cranioplasty enhanced by three-dimensional printing: custom-made three-dimensional-printed titanium implants for skull defects. J Craniofac Surg. 2016;27(4):943–49.
80. Kimura T, Morita A, Nishimura K, Aiyama H, Itoh H, Fukaya S, Sora S, Ochiai C. Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery. 2009;65(4):719–25; discussion 25–26.
81. Wu TY, Lin HH, Lo LJ, Ho CT. Postoperative outcomes of two- and three-dimensional planning in orthognathic surgery: a comparative study. J Plast Reconstr Aesthet Surg. 2017;70(8):1101–111.
82. Callahan AB, Campbell AA, Petris C, Kazim M. Low-cost 3D printing orbital implant templates in secondary orbital reconstructions. Ophthal Plast Reconstr Surg. 2017;33(5):376–80.
83. LoPresti M, Daniels B, Buchanan EP, Monson L, Lam S. Virtual surgical planning and 3D printing in repeat calvarial vault reconstruction for craniosynostosis: technical note. J Neurosurg Pediatr. 2017;19(4):490–94.
84. Kim YC, Jeong WS, Park TK, Choi JW, Koh KS, Oh TS. The accuracy of patient specific implant prebented with 3D-printed rapid prototype model for orbital wall reconstruction.
J Craniomaxillofac Surg. 2017;45(6):928–36.
85. Huang YH, Seelaus R, Zhao L, Patel PK, Cohen M. Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report. Int Med Case Rep J. 2016;9:341–45.
86. Sutradhar A, Park J, Carrau D, Nguyen TH, Miller MJ, Paulino GH. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med Biol Eng Comput. 2016;54(7):1123–135.
87. Park SW, Choi JW, Koh KS, Oh TS. Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction. J Oral Maxillofac Surg. 2015;73(8):1540–553.
88. Mendez BM, Chiodo MV, Patel PA. Customized ‘in-office’ three-dimensional printing for virtual surgical planning in craniofacial surgery. J Craniofac Surg. 2015;26(5):1584–586.
89. Al Jabbari O, Abu Saleh WK, Patel AP, Igo SR, Reardon MJ. Use of three-dimensional models to assist in the resection of malignant cardiac tumors. J Card Surg. 2016;31(9):581–83.
90. Olivieri LJ, Su L, Hynes CF, Krieger A, Alfares FA, Ramakrishnan K, Zurakowski D, Marshall MB, Kim PC, Jonas RA, Nath DS. ‘Just-in-time’ simulation training using 3-D printed cardiac models after congenital cardiac surgery. World J Pediatr Congenit Heart Surg. 2016;7(2):164–68.
91. Osagie L, Shaunak S, Murtaza A, Cerovac S, Umarji S. Advances in 3D modeling: preoperative templating for revision wrist surgery. Hand (NY). 2017;12(5):NP68–72.
92. Spottiswoode BS, van den Heever DJ, Chang Y, Engelhardt S, Du Plessis S, Nicolls F, Hartzenberg HB, Gretschel A. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact Funct Neurosurg. 2013;91(3):162–69.
93. Igami T, Nakamura Y, Hirose T, Ebata T, Yokoyama Y, Sugawara G, Mizuno T, Mori K, Nagino M. Application of a three-dimensional print of a liver in hepatectomy for small tumors invisible by intraoperative ultrasonography: preliminary experience. World J Surg.2014;38(12):3163–6.
94. Ikegami T, Maehara Y. Transplantation: 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol. 2013;10(12):697–98.
95. Zein NN, Hanouneh IA, Bishop PD, Samaan M, Eghtesad B, Quintini C, Miller C, Yerian L, Klatte R. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl. 2013;19(12):1304–310.
96. Chan HH, Siewerdsen JH, Vescan A, Daly MJ, Prisman E, Irish JC. 3D rapid prototyping for otolaryngology-head and neck surgery: applications in image-guidance, surgical simulation and patient-specific modeling. PLoS One. 2015;10(9):e0136370.
97. Mowry SE, Jammal H, Myer Ct, Solares CA, Weinberger P. A novel temporal bone simulation model using 3d printing techniques. Otol Neurotol. 2015;36(9):1562–565.
98. Barth RJ Jr, Krishnaswamy V, Paulsen KD, Rooney TB, Wells WA, Rizzo E, Angeles CV, Marotti JD, Zuurbier RA, Black CC. A patient-specific 3D-printed form accurately transfers supine MRI-derived tumor localization information to guide breast-conserving surgery. Ann Surg Oncol. 2017;24(10):2950–956.
99. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.
100. Chae MP, Hunter-Smith DJ, Murphy SV, Findlay M. 3D bioprinting adipose tissue for breast reconstruction. In: Thomas DJ, Jessop ZM, Whitaker IS, editors. 3D Bioprinting for Reconstructive Surgery: Techniques and Applications. Sawston, Cambridge, UK: Woodhead Publishing, 2017.
101. Chae MP, Hunter-Smith DJ, Murphy SV, Atala A, Rozen WM. 3D bioprinting in nipple-areolar complex reconstruction. In: Shiffman MA, editor. Nipple-Areolar Complex Reconstruction: Principles and Clinical Techniques. Heidelberg, Germany: Springer, 2016.
102. Gillis JA, Morris SF. Three-dimensional printing of perforator vascular anatomy. Plast Reconstr Surg. 2014;133(1):80e–82e.
103. Mehta S, Byrne N, Karunanithy N, Farhadi J. 3D printing provides unrivalled bespoke teaching tools for autologous free flap breast reconstruction. J Plast Reconstr Aesthet Surg. 2016;69(4):578–80.
104. Suarez-Mejias C, Gomez-Ciriza G, Valverde I, Parra Calderon C, Gomez-Cia T. New technologies applied to surgical processes: virtual reality and rapid prototyping. Stud Health Technol Inform. 2015;210:669–71.
105. Cabalag MS, Chae MP, Miller GS, Rozen WM, Hunter-Smith DJ. Use of three-dimensional printed ‘haptic’ models for preoperative planning in an Australian plastic surgery unit. ANZ J Surg. 2017;87(12):1057–059.
106. Taylor EM, Iorio ML. Surgeon-based 3D printing for microvascular bone flaps. J Reconstr Microsurg. 2017;33(6):441–45.
107. Visscher DO, van Eijnatten M, Liberton N, Wolff J, Hofman MBM, Helder MN , Don Griot JPW, Zuijlen PPMV. MRI and additive manufacturing of nasal alar constructs for patient-specific reconstruction. Sci Rep. 2017;7(1):10021.
108. Choi YD, Kim Y, Park E. Patient-specific augmentation rhinoplasty using a three-dimensional simulation program and three-dimensional printing. Aesthet Surg J. 2017;37(9):988–98.
109. Bosc R, Hersant B, Carloni R, Niddam J, Bouhassira J, De Kermadec H, Bequignon E, Wojcik T, Julieron M, Meningaud JP. Mandibular reconstruction after cancer: an in-house approach to manufacturing cutting guides. Int J Oral Maxillofac Surg. 2017;46(1):24–31.
110. Ganry L, Quilichini J, Bandini CM, Leyder P, Hersant B, Meningaud JP. Three-dimensional surgical modelling with an open-source software protocol: study of precision and reproducibility in mandibular reconstruction with the fibula free flap. Int J Oral Maxillofac Surg. 2017;46(8):946–57.
111. Liang Y, Jiang C, Wu L, Wang W, Liu Y, Jian X. Application of combined osteotomy and reconstruction pre-bent plate position (CORPPP) technology to assist in the precise reconstruction of segmental mandibular defects. J Oral Maxillofac Surg. 2017;75(9):2026 e1–10.
112. Mottini M, Seyed Jafari SM, Shafighi M, Schaller B. New approach for virtual surgical planning and mandibular reconstruction using a fibula free flap. Oral Oncol. 2016;59:e6–9.
113. Schouman T, Khonsari RH, Goudot P. Shaping the fibula without fumbling: the SynpliciTi customised guide-plate.
Br J Oral Maxillofac Surg. 2015;53(5):472–73.
114. Seruya M, Fisher M, Rodriguez ED. Computer-assisted versus conventional free fibula flap technique for craniofacial reconstruction: an outcomes comparison. Plast Reconstr Surg. 2013;132(5):1219–228.
115. Rohner D, Bucher P, Hammer B. Prefabricated fibular flaps for reconstruction of defects of the maxillofacial skeleton: planning, technique, and long-term experience. Int J Oral Maxillofac Implants. 2013;28(5):e221–29.
116. Saad A, Winters R, Wise MW, Dupin CL, St Hilaire H. Virtual surgical planning in complex composite maxillofacial reconstruction. Plast Reconstr Surg. 2013;132(3):626–33.
117. Hanasono MM, Skoracki RJ. Computer-assisted design and rapid prototype modeling in microvascular mandible reconstruction. Laryngoscope. 2013;123(3):597–04.
118. Ciocca L, Mazzoni S, Fantini M, Persiani F, Baldissara P, Marchetti C, Scotti R. A CAD/CAM-prototyped anatomical condylar prosthesis connected to a custom-made bone plate to support a fibula free flap. Med Biol Eng Comput. 2012;50(7):743–49.
119. Infante-Cossio P, Gacto-Sanchez P, Gomez-Cia T, Gomez-Ciriza G. Stereolithographic cutting guide for fibula osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(6):712–13.
120. Zheng GS, Su YX, Liao GQ, Chen ZF, Wang L, Jiao PF, Liu HC, Zhong YQ, Zhang TH, Liang YJ. Mandible reconstruction assisted by preoperative virtual surgical simulation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(5):604–11.
121. Hou JS, Chen M, Pan CB, Wang M, Wang JG, Zhang B, Tao Q, Wang C, Huang HZ. Application of CAD/CAM-assisted technique with surgical treatment in reconstruction of the mandible. J Craniomaxillofac Surg. 2012;40(8):e432–37.
122. Antony AK, Chen WF, Kolokythas A, Weimer KA, Cohen MN. Use of virtual surgery and stereolithography-guided osteotomy for mandibular reconstruction with the free fibula. Plast Reconstr Surg. 2011;128(5):1080–084.
123. Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg. 2009;38(2):187–92.
124. Greene JR. Design and development of a new facility for teaching and research in clinical anatomy. Anat Sci Educ. 2009;2(1):34–40.
125. Raja DS, Sultana B. Potential health hazards for students exposed to formaldehyde in the gross anatomy laboratory.
J Environ Health. 2012;74(6):36–40.
126. Mogali SR, Yeong WY, Tan HKJ, Tan GJS, Abrahams PH, Zary N, Low-Beer N, Ferenczi MA. Evaluation by medical students of the educational value of multi-material and multi-colored three-dimensional printed models of the upper limb for anatomical education. Anat Sci Educ. 2018;11(1):54–64.
127. Lioufas PA, Quayle MR, Leong JC, McMenamin PG. 3D printed models of cleft palate pathology for surgical education. Plast Reconstr Surg Glob Open. 2016;4(9):e1029.
128. Zheng Y, Lu B, Zhang J, Wu G. CAD/CAM silicone simulator for teaching cheiloplasty: description of the technique. Br J Oral Maxillofac Surg. 2015;53(2):194–96.
129. AlAli AB, Griffin MF, Calonge WM, Butler PE. Evaluating the use of cleft lip and palate 3D-printed models as a teaching aid. J Surg Educ. 2018;75(1):200–08.
130. Berens AM, Newman S, Bhrany AD, Murakami C, Sie KC, Zopf DA. Computer-aided design and 3D printing to produce a costal cartilage model for simulation of auricular reconstruction. Otolaryngol Head Neck Surg. 2016;155(2):356–59.
131. Blackshear CP, Rector MA, Chung NN, Irizarry DM, Flacco JS, Brett EA, Momeni A, Lee GK, Longaker MT, Wan DC. Three-dimensional ultrasound versus computerized tomography in fat graft volumetric analysis. Ann Plast Surg. 2018;80(3):293–96.
132. Frueh FS, Korbel C, Gassert L, Muller A, Gousopoulos E, Lindenblatt N, Giovanoli P, Laschke MW, Menger MD. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb. Sci Rep. 2016;6:34673.
133. Roxo AC, Nahas FX, Bazi F, de Castro CC, Aboudib JH, Marques RG. Evaluation of the effects of silicone implants on the breast parenchyma. Aesthet Surg J. 2015;35(8):929–35.
134. Roxo AC, Nahas FX, Pinheiro Rodrigues NC, Salles JI, Amaral Cossich VR, de Castro CC, Aboudib JH, Marques RG. Functional and volumetric analysis of the pectoralis major muscle after submuscular breast augmentation. Aesthet Surg J. 2017;37(6):654–61.
135. Corey CL, Popelka GR, Barrera JE, Most SP. An analysis of malar fat volume in two age groups: implications for craniofacial surgery. Craniomaxillofac Trauma Reconstr. 2012;5(4):231–34.
136. Chae MP, Hunter-Smith DJ, De-Silva I, Tham S, Spychal RT, Rozen WM. Four-dimensional (4D) printing: a new evolution in computed tomography-guided stereolithographic modeling. Principles and application. J Reconstr Microsurg. 2015;31(6):458–63.