Imaging and printing in plastic and reconstructive surgery part 1: established techniques

Main Article Content

Michael Park Chae
David Hunter-Smith
Warren Rozen

Keywords

image processing, 3D printing, plastic and reconstructive surgery, CTA, MRA

Abstract

Background: An increasing number of reconstructive surgeons are using modern imaging technologies for preoperative planning and intraoperative surgical guidance. Conventional imaging modalities such as CT and MRI are relatively affordable and widely accessible and offer powerful functionalities. In the first of a two-part series, we evaluate established three-dimensional (3D) imaging and printing techniques based on CT and MRI used in plastic and reconstructive surgery.


Method: A review of the published English literature dating from 1950 to 2017 was taken using databases such as PubMed, MEDLINE®, Web of Science and EMBASE.


Result: In plastic and reconstructive surgery, the most commonly used, free software platforms are 3D Slicer (Surgical Planning Laboratory, Boston, MA, USA) and OsiriX (Pixmeo, Geneva, Switzerland). Perforator mapping using 3D-reconstructed images from computed tomography angiography (CTA) and magnetic resonance angiography (MRA) is commonly used for preoperative planning. Three-dimensional volumetric analysis using current software techniques remains labour-intensive and reliant on operator experience. Three-dimensional printing has been investigated extensively since its introduction. As more free open-source software suites and affordable 3D printers become available, 3D printing is becoming more accessible for clinicians.


Conclusion: Numerous studies have explored the application of 3D-rendered conventional imaging modalities for perforator mapping, volumetric analysis and printing. However, there is a lack of comprehensive review of all established 3D imaging and printing techniques in a language suitable for clinicians.

Metrics

Metrics Loading ...
Abstract 68 | pdf Downloads 44 HTML Downloads 30

References

1. Saint-Cyr M, Schaverien MV, Rohrich RJ. Perforator flaps: history, controversies, physiology, anatomy, and use in reconstruction. Plast Reconstr Surg. 2009;123(4):132e-45e. https://doi.org/10.1097/PRS.0b013e31819f2c6a PMid:19337067
2. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging applications of bedside 3D printing in plastic surgery. Front Surg. 2015;2:25. https://doi.org/10.3389/fsurg.2015.00025 PMid:26137465 PMCid:PMC4468745
3. Pratt GF, Rozen WM, Chubb D, Ashton MW, Alonso-Burgos A, Whitaker IS. Preoperative imaging for perforator flaps in reconstructive surgery: a systematic review of the evidence for current techniques. Ann Plast Surg. 2012;69(1):3-9. https://doi.org/10.1097/SPA.0b013e318222b7b7 PMid:22627495
4. Smit JM, Dimopoulou A, Liss AG, Zeebregts CJ, Kildal M, Whitaker IS, Magnusson A, Acosta R. Preoperative CT angiography reduces surgery time in perforator flap reconstruction. J Plast Reconstr Aesthet Surg. 2009;62(9):1112-117. https://doi.org/10.1016/j.bjps.2007.12.090 PMid:18675605
5. Rozen WM, Anavekar NS, Ashton MW, Stella DL, Grinsell D, Bloom RJ, Taylor GI. Does the preoperative imaging of perforators with CT angiography improve operative outcomes in breast reconstruction? Microsurgery. 2008;28(7):516-23. https://doi.org/10.1002/micr.20526 PMid:18683872
6. Masia J, Clavero JA, Larranaga JR, Alomar X, Pons G, Serret P. Multidetector-row computed tomography in the planning of abdominal perforator flaps. J Plast Reconstr Aesthet Surg. 2006;59(6):594-99. https://doi.org/10.1016/j.bjps.2005.10.024 PMid:16716952
7. Alonso-Burgos A, Garcia-Tutor E, Bastarrika G, Cano D, Martinez-Cuesta A, Pina LJ. Preoperative planning of deep inferior epigastric artery perforator flap reconstruction with multislice-CT angiography: imaging findings and initial experience. J Plast Reconstr Aesthet Surg. 2006;59(6):585-93. https://doi.org/10.1016/j.bjps.2005.12.011 PMid:16716951
8. Masia J, Kosutic D, Cervelli D, Clavero JA, Monill JM, Pons G. In search of the ideal method in perforator mapping: noncontrast magnetic resonance imaging. J Reconstr Microsurg. 2010;26(1):29-35. https://doi.org/10.1055/s-0029-1238222 PMid:19890807
9. Rozen WM, Stella DL, Bowden J, Taylor GI, Ashton MW. Advances in the pre-operative planning of deep inferior epigastric artery perforator flaps: magnetic resonance angiography. Microsurgery. 2009;29(2):119-23. https://doi.org/10.1002/micr.20590 PMid:19021232
10. Clavero JA, Masia J, Larranaga J, Monill JM, Pons G, Siurana S, Alomar X. MDCT in the preoperative planning of abdominal perforator surgery for postmastectomy breast reconstruction. Am J Roentgenol. 2008;191(3):670-76. https://doi.org/10.2214/AJR.07.2515 PMid:18716093
11. Masia J, Larranaga J, Clavero JA, Vives L, Pons G, Pons JM. The value of the multidetector row computed tomography for the preoperative planning of deep inferior epigastric artery perforator flap: our experience in 162 cases. Ann Plast Surg. 2008;60(1):29-36. https://doi.org/10.1097/SAP.0b013e31805003c2 PMid:18281792
12. Rozen WM, Ashton MW, Grinsell D, Stella DL, Phillips TJ, Taylor GI. Establishing the case for CT angiography in the preoperative imaging of abdominal wall perforators. Microsurgery. 2008;28(5):306-13. https://doi.org/10.1002/micr.20496 PMid:18537172
13. Rosson GD, Williams CG, Fishman EK, Singh NK. 3D CT angiography of abdominal wall vascular perforators to plan DIEAP flaps. Microsurgery. 2007;27(8):641-46. https://doi.org/10.1002/micr.20423 PMid:17941105
14. Rozen WM, Ashton MW, Stella DL, Phillips TJ, Taylor GI. Magnetic resonance angiography and computed tomographic angiography for free fibular flap transfer. J Reconstr Microsurg. 2008;24(6):457-58. https://doi.org/10.1055/s-0028-1082890 PMid:18668474
15. Cina A, Barone-Adesi L, Rinaldi P, Cipriani A, Salgarello M, Masetti R, Bonomo, L. Planning deep inferior epigastric perforator flaps for breast reconstruction: a comparison between multidetector computed tomography and magnetic resonance angiography. Eur Radiol. 2013;23(8):2333-343. https://doi.org/10.1007/s00330-013-2834-x PMid:23571697
16. Aubry S, Pauchot J, Kastler A, Laurent O, Tropet Y, Runge M. Preoperative imaging in the planning of deep inferior epigastric artery perforator flap surgery. Skeletal Radiol. 2013;42(3):319-27. https://doi.org/10.1007/s00256-012-1461-y PMid:22729378
17. Mathes DW, Neligan PC. Current techniques in preoperative imaging for abdomen-based perforator flap microsurgical breast reconstruction. J Reconstr Microsurg. 2010;26(1):3-10. https://doi.org/10.1055/s-0029-1244806 PMid:20024888
18. Neil-Dwyer JG, Ludman CN, Schaverien M, McCulley SJ, Perks AG. Magnetic resonance angiography in preoperative planning of deep inferior epigastric artery perforator flaps. J Plast Reconstr Aesthet Surg. 2009;62(12):1661-665. https://doi.org/10.1016/j.bjps.2008.06.048 PMid:18993122
19. Hartung MP, Grist TM, Francois CJ. Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson. 2011;13:19. https://doi.org/10.1186/1532-429X-13-19 PMid:21388544 PMCid:PMC3060856
20. Pauchot J, Aubry S, Kastler A, Laurent O, Kastler B, Tropet Y. Preoperative imaging for deep inferior epigastric perforator flaps: a comparative study of computed tomographic angiography and magnetic resonance angiography. Eur J Plast Surg. 2012;35(11):795-801. https://doi.org/10.1007/s00238-012-0740-0
21. Greenspun D, Vasile J, Levine JL, Erhard H, Studinger R, Chernyak V, Newman T, Prince M, Allen RJ. Anatomic imaging of abdominal perforator flaps without ionizing radiation: seeing is believing with magnetic resonance imaging angiography. J Reconstr Microsurg. 2010;26(1):37-44. https://doi.org/10.1055/s-0029-1220862 PMid:19452440
22. Newman TM, Vasile J, Levine JL, Greenspun DT, Allen RJ, Chao MT, Winchester PA, Prince MR. Perforator flap magnetic resonance angiography for reconstructive breast surgery: a review of 25 deep inferior epigastric and gluteal perforator artery flap patients. J Magn Reson Imaging. 2010;31(5):1176-184. https://doi.org/10.1002/jmri.22136 PMid:20432354
23. Alonso-Burgos A, Garcia-Tutor E, Bastarrika G, Benito A, Dominguez PD, Zubieta JL. Preoperative planning of DIEP and SGAP flaps: preliminary experience with magnetic resonance angiography using 3-tesla equipment and blood-pool contrast medium. J Plast Reconstr Aesthet Surg. 2010;63(2):298-304. https://doi.org/10.1016/j.bjps.2008.11.009 PMid:19121986
24. Chernyak V, Rozenblit AM, Greenspun DT, Levine JL, Milikow DL, Chia FA, Erhard, HA. Breast reconstruction with deep inferior epigastric artery perforator flap: 3.0-T gadolinium-enhanced MR imaging for preoperative localization of abdominal wall perforators. Radiology. 2009;250(2):417-24. https://doi.org/10.1148/radiol.2501080307 PMid:19037016
25. Chae MP, Hunter-Smith DJ, Rozen WM. Comparative analysis of fluorescent angiography, computed tomographic angiography and magnetic resonance angiography for planning autologous breast reconstruction. Gland Surg. 2015;4(2):164-78. PMid:26005648 PMCid:PMC4409669
26. Centre for Evidence-Based Medicine. OCEBM levels of evidence [PDF on internet] Oxford, United Kingdom: CEBM [Updated 1 May 2016; cited 1 October 2014]. Available from: https://www.cebm.net/2016/05/ocebm-levels-of-evidence/.
27. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323-341. https://doi.org/10.1016/j.mri.2012.05.001 PMid:22770690 PMCid:PMC3466397
28. Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WE, Jolesz FA, Black PM, Wells WM III. An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging. 2001;13(6):967-75. https://doi.org/10.1002/jmri.1139 PMid:11382961
29. Yip SSF, Parmar C, Blezek D, Estepar RSJ, Pieper S, Kim J, Aerts H. Application of the 3D Slicer chest imaging platform segmentation algorithm for large lung nodule delineation. PLoS One. 2017;12(6):e0178944. https://doi.org/10.1371/journal.pone.0178944 PMid:28594880 PMCid:PMC5464594
30. Hassanzadeh E, Alessandrino F, Olubiyi OI, Glazer DI, Mulkern RV, Fedorov A, Tempany CM, Fennessy FM. Comparison of quantitative apparent diffusion coefficient parameters with prostate imaging reporting and data system V2 assessment for detection of clinically significant peripheral zone prostate cancer. Abdom Radiol (NY). 2018;43(5):1237-244. https://doi.org/10.1007/s00261-017-1297-y PMid:28840280 PMCid:PMC5826788
31. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17(3):205-16. https://doi.org/10.1007/s10278-004-1014-6 PMid:15534753 PMCid:PMC3046608
32. Vogel WV, Oyen WJ, Barentsz JO, Kaanders JH, Corstens FH. PET/CT: panacea, redundancy, or something in between? J Nucl Med. 2004;45 Suppl 1:15S-24S. PMid:14736832
33. Flohr T, Ohnesorge B, Bruder H, Stierstorfer K, Simon J, Suess C et al. Image reconstruction and performance evaluation for ECG-gated spiral scanning with a 16-slice CT system. Med Phys. 2003;30(10):2650-662. https://doi.org/10.1118/1.1593637 PMid:14596302
34. Tepper OM, Karp NS, Small K, Unger J, Rudolph L, Pritchard, Choi M. Three-dimensional imaging provides valuable clinical data to aid in unilateral tissue expander-implant breast reconstruction. Breast J. 2008;14(6):543-50. https://doi.org/10.1111/j.1524-4741.2008.00645.x PMid:19054001
35. Hudson DA. Factors determining shape and symmetry in immediate breast reconstruction. Ann Plast Surg. 2004;52(1):15-21. https://doi.org/10.1097/01.sap.0000099962.79156.16 PMid:14676693
36. Kovacs L, Zimmermann A, Papadopulos NA, Biemer E. Re: factors determining shape and symmetry in immediate breast reconstruction. Ann Plast Surg. 2004;53(2):192-94. https://doi.org/10.1097/01.sap.0000132572.72432.74 PMid:15269594
37. Lee HY, Hong K, Kim EA. Measurement protocol of women’s nude breasts using a 3D scanning technique. Appl Ergon. 2004;35(4):353-59. https://doi.org/10.1016/j.apergo.2004.03.004 PMid:15159200
38. Galdino GM, Nahabedian M, Chiaramonte M, Geng JZ, Klatsky S, Manson P. Clinical applications of three-dimensional photography in breast surgery. Plast Reconstr Surg. 2002;110(1):58-70. https://doi.org/10.1097/00006534-200207000-00012 PMid:12087232
39. Eder M, Raith S, Jalali J, Muller D, Harder Y, Dobritz M, Papadopulos NA, Machens HG, Kovacs L. Three-dimensional prediction of free-flap volume in autologous breast reconstruction by CT angiography imaging. Int J Comput Assist Radiol Surg. 2014;9(4):541-49. https://doi.org/10.1007/s11548-013-0941-4 PMid:24091852
40. Eric M, Anderla A, Stefanovic D, Drapsin M. Breast volume estimation from systematic series of CT scans using the Cavalieri principle and 3D reconstruction. Int J Surg. 2014;12(9):912-17. https://doi.org/10.1016/j.ijsu.2014.07.018 PMid:25063210
41. Rha EY, Choi IK, Yoo G. Accuracy of the method for estimating breast volume on three-dimensional simulated magnetic resonance imaging scans in breast reconstruction. Plast Reconstr Surg. 2014;133(1):14-20. https://doi.org/10.1097/01.prs.0000436813.03838.09 PMid:24374666
42. Kim H, Lim SY, Pyon JK, Bang SI, Oh KS, Mun GH. Preoperative computed tomographic angiography of both donor and recipient sites for microsurgical breast reconstruction. Plast Reconstr Surg. 2012;130(1):11e-20e. https://doi.org/10.1097/PRS.0b013e3182547d2a PMid:22743896
43. Rosson GD, Shridharani SM, Magarakis M, Manahan MA, Stapleton SM, Gilson MM, Flores JI, Basdag B, Fishman E. Three-dimensional computed tomographic angiography to predict weight and volume of deep inferior epigastric artery perforator flap for breast reconstruction. Microsurgery. 2011;31(7):510-16. https://doi.org/10.1002/micr.20910 PMid:21769924
44. Herold C, Reichelt A, Stieglitz LH, Dettmer S, Knobloch K, Lotz J, Vogt PM. MRI-based breast volumetry-evaluation of three different software solutions. J Digit Imaging. 2010;23(5):603-10. https://doi.org/10.1007/s10278-009-9264-y PMid:20066465 PMCid:PMC3046681
45. Bulstrode N, Bellamy E, Shrotria S. Breast volume assessment: comparing five different techniques. Breast. 2001;10(2):117-23. https://doi.org/10.1054/brst.2000.0196 PMid:14965570
46. Lee KT, Mun GH. Volumetric planning using computed tomographic angiography improves clinical outcomes in DIEP flap breast reconstruction. Plast Reconstr Surg. 2016;137(5):771e-780e. https://doi.org/10.1097/PRS.0000000000002045 PMid:27119938
47. Chae MP, Ramakrishnan V, Hunter-Smith DJ, Rozen WM. The extended DIEP flap. In: Shiffman M, editor. Breast Reconstruction: Art, Science, and New Clinical Techniques. Heidelberg, Germany: Springer, 2016. https://doi.org/10.1007/978-3-319-18726-6_76
48. Kim H, Mun GH, Wiraatmadja ES, Lim SY, Pyon JK, Oh KS, Lee JE, Nam SJ, Bang SI. Preoperative magnetic resonance imaging-based breast volumetry for immediate breast reconstruction. Aesthetic Plast Surg. 2015;39(3):369-76. https://doi.org/10.1007/s00266-015-0493-9 PMid:25924697
49. Fowler PA, Casey CE, Cameron GG, Foster MA, Knight CH. Cyclic changes in composition and volume of the breast during the menstrual cycle, measured by magnetic resonance imaging. Br J Obstet Gynaecol. 1990;97(7):595-02. https://doi.org/10.1111/j.1471-0528.1990.tb02546.x PMid:2390502
50. Chae MP, Hunter-Smith DJ, Spychal RT, Rozen WM. 3D volumetric analysis and haptic modeling for preoperative planning in breast reconstruction. Anaplastology. 2015;4(1):1-4.
51. Chae MP, Hunter-Smith DJ, Spychal RT, Rozen WM. 3D volumetric analysis for planning breast reconstructive surgery. Breast Cancer Res Treat. 2014;146(2):457-60. https://doi.org/10.1007/s10549-014-3028-1 PMid:24939062
52. Rha EY, Kim JM, Yoo G. Volume measurement of various tissues using the Image J software. J Craniofac Surg. 2015;26(6):e505-06. https://doi.org/10.1097/SCS.0000000000002022 PMid:26352364
53. Kamali P, Dean D, Skoracki R, Koolen PG, Paul MA, Ibrahim AM, Lin SJ. The current role of three-dimensional (3D) printing in plastic surgery. Plast Reconstr Surg. 2016 Jan 21 (Epub ahead of print]. https://doi.org/10.1097/PRS.0000000000000150
54. Bauermeister AJ, Zuriarrain A, Newman MI. Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2016;77(5):569-76. https://doi.org/10.1097/SAP.0000000000000671 PMid:26678104
55. Ibrahim AM, Jose RR, Rabie AN, Gerstle TL, Lee BT, Lin SJ. Three-dimensional printing in developing countries. Plast Reconstr Surg Glob Open. 2015;3(7):e443. https://doi.org/10.1097/GOX.0000000000000298 PMid:26301132 PMCid:PMC4527617
56. Gerstle TL, Ibrahim AM, Kim PS, Lee BT, Lin SJ. A plastic surgery application in evolution: three-dimensional printing. Plast Reconstr Surg. 2014;133(2):446-51. https://doi.org/10.1097/01.prs.0000436844.92623.d3 PMid:24469175
57. Sachs EM, Haggerty JS, Cima MJ, Williams PA, inventors. Three-dimensional printing techniques. United States patent US 5,204,055. 1993 April 20.
58. Hull CW, inventor. Method for production of three-dimensional objects by stereolithography. United States patent US 4,929,402. 1990 May 29.
59. Hull CW, inventor. Apparatus for production of three-dimensional objects by stereolithography. United States patent US 4,575,330. 1986 Mar 11.
60. Hoy MB. 3D printing: making things at the library. Med Ref Serv Q. 2013;32(1):93-99. https://doi.org/10.1080/02763869.2013.749139 PMid:23394423
61. Levy GN, Schindel R, Kruth JP. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann-Manuf Techn. 2003;52(2):589-609. https://doi.org/10.1016/S0007-8506(07)60206-6
62. Hieu LC, Zlatov N, Vander Sloten J, Bohez E, Khanh L, Binh PH, Oris P, Toshev Y. Medical rapid prototyping applications and methods. Assembly Autom. 2005;25(4):284-92. https://doi.org/10.1108/01445150510626415
63. Chae MP, Lin F, Spychal RT, Hunter-Smith DJ, Rozen WM. 3D-printed haptic ‘reverse’ models for preoperative planning in soft tissue reconstruction: a case report. Microsurgery. 2015;35(2):148-53. https://doi.org/10.1002/micr.22293 PMid:25046728
64. Garcia-Tutor E, Romeo M, Chae MP, Hunter-Smith DJ, Rozen WM. 3D Volumetric modeling and microvascular reconstruction of irradiated lumbosacral defects after oncologic resection. Front Surg. 2016;3:66. https://doi.org/10.3389/fsurg.2016.00066 PMid:28018904 PMCid:PMC5153530
65. Mavili ME, Canter HI, Saglam-Aydinatay B, Kamaci S, Kocadereli I. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg. 2007;18(4):740-47. https://doi.org/10.1097/scs.0b013e318069014f PMid:17667659
66. Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5):661-66. https://doi.org/10.1016/j.tripleo.2009.05.023 PMid:19716728
67. Watson RA. A low-cost surgical application of additive fabrication. J Surg Educ. 2014;71(1):14-17. https://doi.org/10.1016/j.jsurg.2013.10.012 PMid:24411417
68. Olszewski R, Szymor P, Kozakiewicz M. Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer. J Craniomaxillofac Surg. 2014;42(8):1847-52. https://doi.org/10.1016/j.jcms.2014.07.002 PMid:25176496
69. Crump SS, inventor. Apparatus and method for creating three-dimensional objects. United States patent US 5,121,329. 1992 Jun 9.
70. Wang YT, Yu JH, Lo LJ, Hsu PH, Lin CL. Developing customized dental miniscrew surgical template from thermoplastic polymer material using image superimposition, CAD system, and 3D printing. Biomed Res Int. 2017;1906197. https://doi.org/10.1155/2017/1906197
71. Wang D, Wang Y, Wang J, Song C, Yang Y, Zhang Z, Lin H, Zhen Y, Liao S. Design and fabrication of a precision template for spine surgery using selective laser melting (SLM). Materials (Basel). 2016;9(7):E608. https://doi.org/10.3390/ma9070608 PMid:28773730 PMCid:PMC5456883
72. Yang F, Chen C, Zhou Q, Gong Y, Li R, Li C, Klampfl F, Freund S, Wu X, Sun Y, Li X, Schmidt M, Ma D, Yu Y. Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: fabrication, biocompatibility analysis and photoelastic study. Sci Rep. 2017;7:45360. https://doi.org/10.1038/srep45360 PMid:28350007 PMCid:PMC5368973
73. Coelho G, Chaves TMF, Goes AF, Del Massa EC, Moraes O, Yoshida M. Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery. Childs Nerv Syst. 2017;34(4):749-56. https://doi.org/10.1007/s00381-017-3616-6 PMid:29067504
74. Chen X, Possel JK, Wacongne C, van Ham AF, Klink PC, Roelfsema PR. 3D printing and modelling of customized implants and surgical guides for non-human primates. J Neurosci Methods. 2017;286:38-55. https://doi.org/10.1016/j.jneumeth.2017.05.013 PMid:28512008 PMCid:PMC5482398
75. Egger J, Gall M, Tax A, Ucal M, Zefferer U, Li X et al. Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software. PLoS One. 2017;12(3):e0172694. https://doi.org/10.1371/journal.pone.0172694 PMid:28264062 PMCid:PMC5338774
76. Skrzat J, Spulber A, Walocha J. Three-dimensional model of the skull and the cranial bones reconstructed from CT scans designed for rapid prototyping process. Folia Med Cracov. 2016;56(2):45-52. PMid:28013321
77. Anderson JR, Thompson WL, Alkattan AK, Diaz O, Klucznik R, Zhang YJ et al. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J Neurointerv Surg. 2016;8(5):517-20. https://doi.org/10.1136/neurintsurg-2015-011686 PMid:25862767
78. Ploch CC, Mansi C, Jayamohan J, Kuhl E. Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg. 2016;90:668-74. https://doi.org/10.1016/j.wneu.2016.02.081 PMid:26924117
79. Park EK, Lim JY, Yun IS, Kim JS, Woo SH, Kim DS, Shim KW. Cranioplasty enhanced by three-dimensional printing: custom-made three-dimensional-printed titanium implants for skull defects. J Craniofac Surg. 2016;27(4):943-49. https://doi.org/10.1097/SCS.0000000000002656 PMid:27192643
80. Kimura T, Morita A, Nishimura K, Aiyama H, Itoh H, Fukaya S, Sora S, Ochiai C. Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery. 2009;65(4):719-25; discussion 25-26. https://doi.org/10.1227/01.NEU.0000354350.88899.07 PMid:19834377
81. Wu TY, Lin HH, Lo LJ, Ho CT. Postoperative outcomes of two- and three-dimensional planning in orthognathic surgery: a comparative study. J Plast Reconstr Aesthet Surg. 2017;70(8):1101-111. https://doi.org/10.1016/j.bjps.2017.04.012 PMid:28528114
82. Callahan AB, Campbell AA, Petris C, Kazim M. Low-cost 3D printing orbital implant templates in secondary orbital reconstructions. Ophthal Plast Reconstr Surg. 2017;33(5):376-80. https://doi.org/10.1097/IOP.0000000000000884 PMid:28230707
83. LoPresti M, Daniels B, Buchanan EP, Monson L, Lam S. Virtual surgical planning and 3D printing in repeat calvarial vault reconstruction for craniosynostosis: technical note. J Neurosurg Pediatr. 2017;19(4):490-94. https://doi.org/10.3171/2016.10.PEDS16301 PMid:28156217
84. Kim YC, Jeong WS, Park TK, Choi JW, Koh KS, Oh TS. The accuracy of patient specific implant prebented with 3D-printed rapid prototype model for orbital wall reconstruction. J Craniomaxillofac Surg. 2017;45(6):928-36. https://doi.org/10.1016/j.jcms.2017.03.010 PMid:28434826
85. Huang YH, Seelaus R, Zhao L, Patel PK, Cohen M. Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report. Int Med Case Rep J. 2016;9:341-45. https://doi.org/10.2147/IMCRJ.S118139 PMid:27843356 PMCid:PMC5098757
86. Sutradhar A, Park J, Carrau D, Nguyen TH, Miller MJ, Paulino GH. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med Biol Eng Comput. 2016;54(7):1123-135. https://doi.org/10.1007/s11517-015-1418-0 PMid:26660897
87. Park SW, Choi JW, Koh KS, Oh TS. Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction. J Oral Maxillofac Surg. 2015;73(8):1540-553. https://doi.org/10.1016/j.joms.2015.03.025 PMid:25869986
88. Mendez BM, Chiodo MV, Patel PA. Customized ‘in-office’ three-dimensional printing for virtual surgical planning in craniofacial surgery. J Craniofac Surg. 2015;26(5):1584-586. https://doi.org/10.1097/SCS.0000000000001768 PMid:26106998
89. Al Jabbari O, Abu Saleh WK, Patel AP, Igo SR, Reardon MJ. Use of three-dimensional models to assist in the resection of malignant cardiac tumors. J Card Surg. 2016;31(9):581-83. https://doi.org/10.1111/jocs.12812 PMid:27455392
90. Olivieri LJ, Su L, Hynes CF, Krieger A, Alfares FA, Ramakrishnan K, Zurakowski D, Marshall MB, Kim PC, Jonas RA, Nath DS. ‘Just-in-time’ simulation training using 3-D printed cardiac models after congenital cardiac surgery. World J Pediatr Congenit Heart Surg. 2016;7(2):164-68. https://doi.org/10.1177/2150135115623961 PMid:26957398
91. Osagie L, Shaunak S, Murtaza A, Cerovac S, Umarji S. Advances in 3D modeling: preoperative templating for revision wrist surgery. Hand (NY). 2017;12(5):NP68-72. https://doi.org/10.1177/1558944716681973 PMid:28832216 PMCid:PMC5684935
92. Spottiswoode BS, van den Heever DJ, Chang Y, Engelhardt S, Du Plessis S, Nicolls F, Hartzenberg HB, Gretschel A. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact Funct Neurosurg. 2013;91(3):162-69. https://doi.org/10.1159/000345264 PMid:23446024
93. Igami T, Nakamura Y, Hirose T, Ebata T, Yokoyama Y, Sugawara G, Mizuno T, Mori K, Nagino M. Application of a three-dimensional print of a liver in hepatectomy for small tumors invisible by intraoperative ultrasonography: preliminary experience. World J Surg.2014;38(12):3163-6. https://doi.org/10.1007/s00268-014-2740-7 PMid:25145821
94. Ikegami T, Maehara Y. Transplantation: 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol. 2013;10(12):697-98. https://doi.org/10.1038/nrgastro.2013.195 PMid:24126562
95. Zein NN, Hanouneh IA, Bishop PD, Samaan M, Eghtesad B, Quintini C, Miller C, Yerian L, Klatte R. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl. 2013;19(12):1304-310. https://doi.org/10.1002/lt.23729 PMid:23959637
96. Chan HH, Siewerdsen JH, Vescan A, Daly MJ, Prisman E, Irish JC. 3D rapid prototyping for otolaryngology-head and neck surgery: applications in image-guidance, surgical simulation and patient-specific modeling. PLoS One. 2015;10(9):e0136370. https://doi.org/10.1371/journal.pone.0136370 PMid:26331717 PMCid:PMC4557980
97. Mowry SE, Jammal H, Myer Ct, Solares CA, Weinberger P. A novel temporal bone simulation model using 3d printing techniques. Otol Neurotol. 2015;36(9):1562-565. https://doi.org/10.1097/MAO.0000000000000848 PMid:26375979
98. Barth RJ Jr, Krishnaswamy V, Paulsen KD, Rooney TB, Wells WA, Rizzo E, Angeles CV, Marotti JD, Zuurbier RA, Black CC. A patient-specific 3D-printed form accurately transfers supine MRI-derived tumor localization information to guide breast-conserving surgery. Ann Surg Oncol. 2017;24(10):2950-956. https://doi.org/10.1245/s10434-017-5979-z PMid:28766199 PMCid:PMC6015768
99. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85. https://doi.org/10.1038/nbt.2958 PMid:25093879
100. Chae MP, Hunter-Smith DJ, Murphy SV, Findlay M. 3D bioprinting adipose tissue for breast reconstruction. In: Thomas DJ, Jessop ZM, Whitaker IS, editors. 3D Bioprinting for Reconstructive Surgery: Techniques and Applications. Sawston, Cambridge, UK: Woodhead Publishing, 2017.
101. Chae MP, Hunter-Smith DJ, Murphy SV, Atala A, Rozen WM. 3D bioprinting in nipple-areolar complex reconstruction. In: Shiffman MA, editor. Nipple-Areolar Complex Reconstruction: Principles and Clinical Techniques. Heidelberg, Germany: Springer, 2016.
102. Gillis JA, Morris SF. Three-dimensional printing of perforator vascular anatomy. Plast Reconstr Surg. 2014;133(1):80e-82e. https://doi.org/10.1097/01.prs.0000436523.79293.64 PMid:24374711
103. Mehta S, Byrne N, Karunanithy N, Farhadi J. 3D printing provides unrivalled bespoke teaching tools for autologous free flap breast reconstruction. J Plast Reconstr Aesthet Surg. 2016;69(4):578-80. https://doi.org/10.1016/j.bjps.2015.12.026 PMid:26906554
104. Suarez-Mejias C, Gomez-Ciriza G, Valverde I, Parra Calderon C, Gomez-Cia T. New technologies applied to surgical processes: virtual reality and rapid prototyping. Stud Health Technol Inform. 2015;210:669-71. PMid:25991234
105. Cabalag MS, Chae MP, Miller GS, Rozen WM, Hunter-Smith DJ. Use of three-dimensional printed ‘haptic’ models for preoperative planning in an Australian plastic surgery unit. ANZ J Surg. 2017;87(12):1057-059. https://doi.org/10.1111/ans.13168 PMid:25988598
106. Taylor EM, Iorio ML. Surgeon-based 3D printing for microvascular bone flaps. J Reconstr Microsurg. 2017;33(6):441-45. https://doi.org/10.1055/s-0037-1600133 PMid:28259113
107. Visscher DO, van Eijnatten M, Liberton N, Wolff J, Hofman MBM, Helder MN , Don Griot JPW, Zuijlen PPMV. MRI and additive manufacturing of nasal alar constructs for patient-specific reconstruction. Sci Rep. 2017;7(1):10021. https://doi.org/10.1038/s41598-017-10602-9 PMid:28855717 PMCid:PMC5577227
108. Choi YD, Kim Y, Park E. Patient-specific augmentation rhinoplasty using a three-dimensional simulation program and three-dimensional printing. Aesthet Surg J. 2017;37(9):988-98. https://doi.org/10.1093/asj/sjx046 PMid:28520846
109. Bosc R, Hersant B, Carloni R, Niddam J, Bouhassira J, De Kermadec H, Bequignon E, Wojcik T, Julieron M, Meningaud JP. Mandibular reconstruction after cancer: an in-house approach to manufacturing cutting guides. Int J Oral Maxillofac Surg. 2017;46(1):24-31. https://doi.org/10.1016/j.ijom.2016.10.004 PMid:27815013
110. Ganry L, Quilichini J, Bandini CM, Leyder P, Hersant B, Meningaud JP. Three-dimensional surgical modelling with an open-source software protocol: study of precision and reproducibility in mandibular reconstruction with the fibula free flap. Int J Oral Maxillofac Surg. 2017;46(8):946-57. https://doi.org/10.1016/j.ijom.2017.02.1276 PMid:28433213
111. Liang Y, Jiang C, Wu L, Wang W, Liu Y, Jian X. Application of combined osteotomy and reconstruction pre-bent plate position (CORPPP) technology to assist in the precise reconstruction of segmental mandibular defects. J Oral Maxillofac Surg. 2017;75(9):2026 e1-10.
112. Mottini M, Seyed Jafari SM, Shafighi M, Schaller B. New approach for virtual surgical planning and mandibular reconstruction using a fibula free flap. Oral Oncol. 2016;59:e6-9. https://doi.org/10.1016/j.oraloncology.2016.06.001 PMid:27344375
113. Schouman T, Khonsari RH, Goudot P. Shaping the fibula without fumbling: the SynpliciTi customised guide-plate.
Br J Oral Maxillofac Surg. 2015;53(5):472-73. https://doi.org/10.1016/j.bjoms.2015.02.008 PMid:25765600
114. Seruya M, Fisher M, Rodriguez ED. Computer-assisted versus conventional free fibula flap technique for craniofacial reconstruction: an outcomes comparison. Plast Reconstr Surg. 2013;132(5):1219-228. https://doi.org/10.1097/PRS.0b013e3182a3c0b1 PMid:23924648
115. Rohner D, Bucher P, Hammer B. Prefabricated fibular flaps for reconstruction of defects of the maxillofacial skeleton: planning, technique, and long-term experience. Int J Oral Maxillofac Implants. 2013;28(5):e221-29. https://doi.org/10.11607/jomi.te01 PMid:24066339
116. Saad A, Winters R, Wise MW, Dupin CL, St Hilaire H. Virtual surgical planning in complex composite maxillofacial reconstruction. Plast Reconstr Surg. 2013;132(3):626-33. https://doi.org/10.1097/PRS.0b013e31829ad299 PMid:23985637
117. Hanasono MM, Skoracki RJ. Computer-assisted design and rapid prototype modeling in microvascular mandible reconstruction. Laryngoscope. 2013;123(3):597-04. https://doi.org/10.1002/lary.23717 PMid:23007556
118. Ciocca L, Mazzoni S, Fantini M, Persiani F, Baldissara P, Marchetti C, Scotti R. A CAD/CAM-prototyped anatomical condylar prosthesis connected to a custom-made bone plate to support a fibula free flap. Med Biol Eng Comput. 2012;50(7):743-49. https://doi.org/10.1007/s11517-012-0898-4 PMid:22447348
119. Infante-Cossio P, Gacto-Sanchez P, Gomez-Cia T, Gomez-Ciriza G. Stereolithographic cutting guide for fibula osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(6):712-13. https://doi.org/10.1016/j.oooo.2011.11.033 PMid:22668699
120. Zheng GS, Su YX, Liao GQ, Chen ZF, Wang L, Jiao PF, Liu HC, Zhong YQ, Zhang TH, Liang YJ. Mandible reconstruction assisted by preoperative virtual surgical simulation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(5):604-11. https://doi.org/10.1016/j.tripleo.2011.05.016 PMid:22676986
121. Hou JS, Chen M, Pan CB, Wang M, Wang JG, Zhang B, Tao Q, Wang C, Huang HZ. Application of CAD/CAM-assisted technique with surgical treatment in reconstruction of the mandible. J Craniomaxillofac Surg. 2012;40(8):e432-37. https://doi.org/10.1016/j.jcms.2012.02.022 PMid:22484124
122. Antony AK, Chen WF, Kolokythas A, Weimer KA, Cohen MN. Use of virtual surgery and stereolithography-guided osteotomy for mandibular reconstruction with the free fibula. Plast Reconstr Surg. 2011;128(5):1080-084. https://doi.org/10.1097/PRS.0b013e31822b6723 PMid:22030490
123. Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg. 2009;38(2):187-92. https://doi.org/10.1016/j.ijom.2008.11.026 PMid:19179046
124. Greene JR. Design and development of a new facility for teaching and research in clinical anatomy. Anat Sci Educ. 2009;2(1):34-40. https://doi.org/10.1002/ase.70 PMid:19217068
125. Raja DS, Sultana B. Potential health hazards for students exposed to formaldehyde in the gross anatomy laboratory. J Environ Health. 2012;74(6):36-40. PMid:22329207
126. Mogali SR, Yeong WY, Tan HKJ, Tan GJS, Abrahams PH, Zary N, Low-Beer N, Ferenczi MA. Evaluation by medical students of the educational value of multi-material and multi-colored three-dimensional printed models of the upper limb for anatomical education. Anat Sci Educ. 2018;11(1):54-64. https://doi.org/10.1002/ase.1703 PMid:28544582
127. Lioufas PA, Quayle MR, Leong JC, McMenamin PG. 3D printed models of cleft palate pathology for surgical education. Plast Reconstr Surg Glob Open. 2016;4(9):e1029. https://doi.org/10.1097/GOX.0000000000001029 PMid:27757345 PMCid:PMC5055011
128. Zheng Y, Lu B, Zhang J, Wu G. CAD/CAM silicone simulator for teaching cheiloplasty: description of the technique. Br J Oral Maxillofac Surg. 2015;53(2):194-96. https://doi.org/10.1016/j.bjoms.2014.10.001 PMid:25476261
129. AlAli AB, Griffin MF, Calonge WM, Butler PE. Evaluating the use of cleft lip and palate 3D-printed models as a teaching aid. J Surg Educ. 2018;75(1):200-08. https://doi.org/10.1016/j.jsurg.2017.07.023 PMid:28869160
130. Berens AM, Newman S, Bhrany AD, Murakami C, Sie KC, Zopf DA. Computer-aided design and 3D printing to produce a costal cartilage model for simulation of auricular reconstruction. Otolaryngol Head Neck Surg. 2016;155(2):356-59. https://doi.org/10.1177/0194599816639586 PMid:27048671 PMCid:PMC5828773
131. Blackshear CP, Rector MA, Chung NN, Irizarry DM, Flacco JS, Brett EA, Momeni A, Lee GK, Longaker MT, Wan DC. Three-dimensional ultrasound versus computerized tomography in fat graft volumetric analysis. Ann Plast Surg. 2018;80(3):293-96. https://doi.org/10.1097/SAP.0000000000001183 PMid:28678028 PMCid:PMC5752634
132. Frueh FS, Korbel C, Gassert L, Muller A, Gousopoulos E, Lindenblatt N, Giovanoli P, Laschke MW, Menger MD. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb. Sci Rep. 2016;6:34673. https://doi.org/10.1038/srep34673 PMid:27698469 PMCid:PMC5048170
133. Roxo AC, Nahas FX, Bazi F, de Castro CC, Aboudib JH, Marques RG. Evaluation of the effects of silicone implants on the breast parenchyma. Aesthet Surg J. 2015;35(8):929-35. https://doi.org/10.1093/asj/sjv120 PMid:26508645
134. Roxo AC, Nahas FX, Pinheiro Rodrigues NC, Salles JI, Amaral Cossich VR, de Castro CC, Aboudib JH, Marques RG. Functional and volumetric analysis of the pectoralis major muscle after submuscular breast augmentation. Aesthet Surg J. 2017;37(6):654-61. https://doi.org/10.1093/asj/sjw239
135. Corey CL, Popelka GR, Barrera JE, Most SP. An analysis of malar fat volume in two age groups: implications for craniofacial surgery. Craniomaxillofac Trauma Reconstr. 2012;5(4):231-34 . https://doi.org/10.1055/s-0032-1329545 PMid:24294406 PMCid:PMC3577599
136. Chae MP, Hunter-Smith DJ, De-Silva I, Tham S, Spychal RT, Rozen WM. Four-dimensional (4D) printing: a new evolution in computed tomography-guided stereolithographic modeling. Principles and application. J Reconstr Microsurg. 2015;31(6):458-63. https://doi.org/10.1055/s-0035-1549006 PMid:25868154