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Section: Technology and imaging

Abstract
Background: An increasing number of reconstructive 
surgeons are using modern imaging technologies 
for preoperative planning and intraoperative surgical 
guidance. Conventional imaging modalities such 
as CT and MRI are relatively affordable and widely 
accessible and offer powerful functionalities. In the 
first of a two-part series, we evaluate established 
three-dimensional (3D) imaging and printing 
techniques based on CT and MRI used in plastic and 
reconstructive surgery. 

Method: A review of the published English literature 
dating from 1950 to 2017 was taken using databases 
such as PubMed, MEDLINE®, Web of Science and 
EMBASE.

Results: In plastic and reconstructive surgery, the 
most commonly used, free software platforms are 
3D Slicer (Surgical Planning Laboratory, Boston, 
MA, USA) and OsiriX (Pixmeo, Geneva, Switzerland). 
Perforator mapping using 3D-reconstructed images 
from computed tomography angiography (CTA) 
and magnetic resonance angiography (MRA) is 
commonly used for preoperative planning. Three-
dimensional volumetric analysis using current 
software techniques remains labour-intensive and 
reliant on operator experience. Three-dimensional 
printing has been investigated extensively since its 
introduction. As more free open-source software 
suites and affordable 3D printers become available, 
3D printing is becoming more accessible for 
clinicians. 

Conclusion: Numerous studies have explored the 
application of 3D-rendered conventional imaging 
modalities for perforator mapping, volumetric 
analysis and printing. However, there is a lack of 
comprehensive review of all established 3D imaging 
and printing techniques in a language suitable for 
clinicians. 

Keywords: image processing, 3D printing, plastic and 
reconstructive surgery, CTA, MRA
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Introduction 
Performing perforator-based flap reconstruction 
requires careful selection of the perforator, flap 
design and donor site. A suitable perforator is 
ideally harvested from a donor site with minimal 
morbidity and is large enough to facilitate 
microsurgical anastomosis and adequately 
supply all portions of the flap.1 In recent times, an 
increasing number of plastic and reconstructive 
surgeons have begun using modern 3D imaging and 
printing technologies to aid preoperative planning, 
intraoperative guidance and medical education.2,3 
However, there is a lack of comprehensive 
review of these techniques that provides a global 
understanding of this novel field in a language 
suitable for clinicians. 

Currently, a plethora of imaging modalities is 
being used in plastic and reconstructive surgery, 
mainly computed tomography angiography (CTA) 
and magnetic resonance angiography (MRA).4–9 
First reported for perforator-based flap planning 
in 2006,6,7 CTA is widely used in preoperative 
investigations by institutions around the world 
and is considered the gold standard due to its 
high accuracy and reliability.4,5,10–13 However, CTA 
poses the potential risk of additional radiation 
exposure, involves intravenous administration 
of iodinated contrast media and does not provide 
haemodynamic features such as flow velocity and 
direction. 

Magnetic resonance angiography bypasses 
radiation exposure but is limited by only being 
able to detect vessels greater than 1  mm in 
diameter.14 It also has lower spatial resolution15 
and poorer contrast differentiation from the 
surrounding soft tissue.16 As a result, MRA has a 
lower sensitivity (50%) for detecting abdominal 
wall perforators than CTA.9 Enhanced by recent 
advances in imaging techniques,17 contrast agents18 
and increasing availability of higher field-strength 
scanners,19 more recent studies have reported 
improved sensitivity in identifying perforators 
(91.3–100%).8,20–24 As a result, MRA remains an 
investigation of choice for younger patients and 
for those with iodine allergy and impaired renal 
function.25

In this review, we evaluate the established 3D 
imaging and printing techniques based on CT and 
MRI. 

Methods
We reviewed the published English literature 
from 1950 to 2017 from well-established databases 
such as PubMed, MEDLINE®, Web of Science and 
EMBASE. We included all studies that analyse 3D 
imaging and printing techniques used in surgery, 
especially plastic and reconstructive surgery. We 
used search terms such as ‘3D imaging’, ‘CTA’, ‘MRA’, 
‘3D image software’, ‘volumetric analysis’, ‘3D 
printing’, ‘preoperative planning’, ‘intraoperative 
guidance’, ‘education’, ‘training’ and ‘customised 
implant’. We also retrieved secondary references 
found through bibliographical linkages. 

3D imaging rendering software
Through our literature review, we identified the 
most commonly used 3D image rendering software 
suites in medical application. We identified their 
specifications, such as the software language on 
which they are based, cost, open-source capability 
and function, by accessing the manufacturer’s 
website or from publications. 

3D perforator mapping 
We identified that CTA and MRA are the most 
commonly used imaging modalities for 3D 
perforator mapping. Hence, we evaluated the 
software suites based on these modalities. 

3D volumetric analysis 
We focused our analysis of 3D volumetric analysis 
based on conventional 3D imaging techniques, 
CT and MRI. We systematically identified a list of 
software suites used to analyse 3D volumetric data 
from CT or MRI and examined their application in 
plastic and reconstructive surgery. 

3D printing 
Studies using 3D printing for preoperative planning 
in plastic and reconstructive surgery were assessed 
using Oxford Centre for Evidence-Based Medicine 
levels of evidence.26 Given that the most common 3D 
printing application in plastic and reconstructive 
surgery is mandibular reconstruction with free 
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built on ITK and VTK, for Macintosh computers 
only. It has an intuitive graphical user interface 
and fast processing speed make it popular with 
clinicians worldwide.31 OsiriX enables viewing of 
multidimensional data such as positron emission 
tomography (PET)-CT32 and cardiac-CT as well as 
standard tomographic scans (CT and MRI).33 It is 
suitable for viewing 3D and 4D datasets but limited 
to 3D anatomical models of large organs such as 
long bones and the heart. 

3D perforator mapping 

In perforator based, free flap reconstruction, plastic 
surgeons commonly rely on CTA- or MRA-based 3D 
reconstructed images of the relevant perforators 
for preoperative planning (see Figure 1). 

CTA 

Computed tomography angiography is the most 
commonly used imaging modality for 3D perforator 
mapping, using maximum intensity projection 
(MIP) and volume-rendered technique (VRT) 3D 
software reconstruction techniques. Compared 
with Siemens Syngo InSpace 4D (Siemens, 
Erlangen, Germany) and VoNaviX (IVS Technology, 
Chemnitz, Germany), which are expensive, and 
virSSPA (University Hospitals Virgen del Rocio, 
Sevilla, Spain), which is not available outside the 
original institution, OsiriX software platform is 
free and has been demonstrated to be as accurate. 

MRA 

Modern magnetic resonance technology can 
provide superior 3D reconstructed images. 
However, they are expensive, time-consuming 

fibular flap, we performed a focused further 
qualitative analysis of this application. 

Results and discussion
Numerous studies have explored the application of 
conventional imaging modalities for 3D perforator 
mapping, 3D volumetric analysis and 3D printing. 

3D image rendering

Proprietary software provided by manufacturers 
of CT and MRI scanners generally offers only 
two-dimensional image-viewing capabilities. As 
a result, numerous free, open-source software 
platforms have been developed that are capable 
of 3D image rendering. They are built on robust, 
but limited, open-source software libraries that 
provide the basic architecture. In plastic and 
reconstructive surgery, the most commonly used 
free software platforms are 3D Slicer (Surgical 
Planning Laboratory, Boston, MA, USA) and OsiriX 
(Pixmeo, Geneva, Switzerland) (see Table 1). 

3D Slicer

3D Slicer27 is a well-supported, open-source platform 
built on Insight ToolKit (ITK) and Visualisation 
ToolKit (VTK) using C++ and Python.2 Developed to 
segment brain tumours from MRI scans28 3D Slicer 
is used in a variety of medical applications ranging 
from lung cancer diagnosis29 to cancer imaging.30 
This software is adept at generating volumetric 
images for 3D printing through thresholding and 
segmentation techniques. 

OsiriX 

The OsiriX31 image-viewing software platform is 

Table 1. Summary of 3D image rendering software 

Product Manufacturer Software 
language

Free Open-
source

Function

3D Slicer Surgical Planning 
Laboratory (Boston, 
MA, USA)

C++
Python

Yes Yes Built on ITK and VTK 
Easy-to-use graphical user interface
Creates 3D images of regions of interest 
suitable for 3D printing

OsiriX Pixmeo (Geneva, 
Switzerland)

Objective-C Yes No Built on ITK and VTK 
Enables both viewing and 3D rendering of 
anatomical structures 
Easy-to-use graphical user interface 
Has both 3D rendering techniques: volume-
rendered technique and maximum intensity 
projection

ITK = Insight ToolKit VTK = Visualisation ToolKit. Sources: Fedorov and colleagues,27 Rosset and colleagues.31
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surgery.34–38 Particularly in breast reconstructive 
surgery, volumetric analysis is paramount for 
achieving symmetrisation and a satisfactory 
outcome.39–44 However, an accurate, reliable and 
convenient method of objective breast volumetric 
analysis has remained elusive (see Figure 2 and 
Table 2).45 

CTA

Calculating the flap volume from CTA and 
comparing it with the intraoperative flap weight, 
Eder and colleagues reported high correlation 
between the two measurements (r = 0.998, p < 0.001) 
demonstrating the high prediction accuracy of CTA 
(0.29%; –8.77 to 5.67%).39 

In order to further improve its accuracy, Rosson 
and colleagues placed fiducial markers on the 
surgical incision line before the CTA and achieved 
accuracy of up to 99.7 per cent (91–109%).43

Lee and colleagues calculated a ratio using the 
volume of the breast and the potential deep 
inferior epigastric artery perforator (DIEP) flap 
from CTA and created a treatment algorithm.46 
If more than 50 per cent of the harvested flap is 
required for reconstruction, surgeons can make 
modifications to the flap design by increasing its 
height, capturing more adipose tissue by bevelling 
superiorly from the flap’s upper margin, like 
Ramakrishnan’s extended DIEP technique,47 and 
incorporating multiple perforators if available. If 
more than 75 per cent of the flap is required, venous 
augmentation is performed with contralateral 
superficial inferior epigastric vein. Using this 
algorithm in 109 consecutive patients, the authors 
noted a significant reduction in perfusion-related 
complications (5.6 vs 22.9%, p = 0.006) and 
fat necrosis (5.6 vs 19.1%, p = 0.03). 

MRI 

In comparison to CT, MRI has superior soft-tissue 
resolution and is thus more accurate at measuring 
breast volumes (r = 0.928 vs 0.782, p = 0.001)48 and 
has a mean measurement deviation of only 4.3 per 
cent.49 Furthermore, Rha and colleagues show that 
MRI-derived breast volume is more accurate than 
the traditional volumetric method using a plaster 
cast (r2 = 0.945 vs 0.625).41 

Fig 1. Computed tomographic angiography (CTA)-based three- 
dimensional (3D) perforator mapping in deep inferior epigastric artery 
perforator (DIEP) flap planning performed using OsiriX software. (A) 
Maximum intensity projection (MIP) reconstruction demonstrating the 
intramuscular and subcutaneous course of each perforator. (B) 
Volume-rendered technique (VRT) reconstruction demonstrating the 
location of the perforators (blue arrows) as they emerge from the 
rectus sheath in reference to the umbilicus (marked)

Fig 2. MRI-based 3D volumetric analysis in planning breast reconstructive 
surgery demonstrating 611 mL on the right breast and 635 mL on the left 
breast, performed using OsiriX software (Pixmeo, Geneva, Switzerland)

and relatively difficult to perform. Similar to CTA, 
free OsiriX software can be used for 3D perforator 
mapping from MRA. Recently, investigators have 
developed a semi-automated plugin tool for 
analysing MRA images using OsiriX, However, it 
remains to be validated in a large cohort. 

3D volumetric analysis 
Accurate assessment of tissue volume is an 
important aspect of preoperative planning in plastic 
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Using the manufacturer’s specifications as gold 
standard, Herold and colleagues measured the 
volume of breast implants using MRI in patients 
with bilateral augmentation mammaplasty.44 
Furthermore, they compared the accuracy of 
three commonly available 3D image processing 
software platforms: OsiriX, BrainLAB (BrainLAB 
AG, Feldkirchen, Germany) and Medis Suite MR 
(Medis Medical Imaging Systems BV, Leiden, The 
Netherlands). BrainLAB had the lowest mean 
deviation of 2.2 ± 1.7 per cent, followed by OsiriX at 
2.8 ± 3.0 per cent and Medis Suite MR at 3.1 ± 3.0 per 
cent. However, all software platforms correlated 
highly accurately with the reference overall 
(r = 0.99). Interestingly, software analysis is fastest 
using OsiriX at 30 seconds per implant, followed by 
BrainLAB and Medis Suite MR at 5 minutes. 

To date, most software techniques remain 
manual, that is labour-intensive and reliant on 

operator experience, while validated evidence of 
commercially available automatic segmentation 
tool is scarce.50,51 Interestingly, Rha and colleagues 
used ImageJ, a free NIH-developed image 
processing program, to successfully perform 
volumetric analysis of the orbit and breast from CT 
and MRI, respectively.52 However, ImageJ has yet to 
be investigated in clinical application.

3D printing 

In contrast to medical imaging modalities that 
are limited by being displayed on a 2D surface, 
such as a computer screen, a 3D-printed biomodel 
can additionally provide haptic feedback.2,53–56 
Three-dimensional printing, also known as rapid 
prototyping or additive manufacturing, describes 
a process by which a product derived from 
computer-aided design (CAD) is built in a layer-
by-layer manner.57–59 The main advantages of 3D 

Table 2. Summary of software platforms capable of performing 3D volumetric analysis from CT and MRI 

Product Manufacturer Free Open-
source

Clinical application

CT

OsiriX Pixmeo, Geneva, Switzerland Yes No Breast

Aquarius Workstation TeraRecon Inc., San Mateo, CA, USA No No Breast, DIEP flap

Mimics Materialise NV, Leuven, Belgium No No DIEP flap

Leonardo 
Workstation

Siemens AG, Munich, Germany No No DIEP flap

ImageJ NIH, Rockville, MD, USA Yes No Orbital volume

Vevo LAB Fujifilm ViewSonics, Toronto, 
Canada

No No Autologous fat graft in mice 

SkyScan CTan Bruker, Kontich, Belgium No No Limb lymphoedema in mice 

MRI

OsiriX Pixmeo, Geneva, Switzerland Yes No Breast, Breast implant, Limb 
lymphoedema in mice

Volume Viewer Plus GE Healthcare, Waukesha, WI, USA No No Breast 

BrainLAB BrainLAB AG, Feldkirchen, Germany No No Breast, Breast implant

Medis Suite MR Medis Medical Imaging Systems BV, 
Leiden, The Netherlands

No No Breast, Breast implant 

AW Server GE Healthcare, Waukesha, WI, USA No No Breast glandular tissue

Muscle (pectoralis major)

Dextroscope Volume Interactions, Singapore No No Malar fat pad

ImageJ National Institutes of Health, 
Rockville, MD, USA

Yes No Breast 

DIEP = deep inferior epigastric artery perforator. Source: Eder and colleagues,39 Rha and colleagues,41 Rosson and colleagues,43 Herold and 
colleagues,44 Lee and colleagues,46 Chae and colleagues,51 Rha and colleagues,52 Blackshear and colleagues,131 and Corey and colleagues135
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printing are the ability to customise, cost-efficiency 
and convenience.60,61 Since its introduction, the 
use of 3D printing in surgery has been extensively 
investigated. 

In clinical application, two types of software 
platforms are required for 3D printing: 3D 
modelling software that can convert standard 
Digital Imaging and Communications in Medicine 
(DICOM) files from CTA/MRA into a CAD file; 
and 3D slicing software that divides the CAD file 
into thin data slices suitable for printing.62 A 
range of modelling software is available but only 
the following are user-friendly and commonly 
reported: 3D Slicer,51,63 OsiriX64 and Mimics 
(Materialise NV, Leuven, Belgium).65 Three-
dimensional slicing software usually accompanies 
3D printers at no additional cost and has a simple 
user interface such as Cube software (3D Systems, 
Rock Hill, SC, USA), MakerBot Desktop (MakerBot 
Industries, New York, NY, USA) or Cura (Ultimaker 
BV, Geldermalsen, The Netherlands). 

In clinical application, a host of 3D printer 
types have been used including fused filament 
fabrication (FFF), selective laser sintering (SLS), 
stereolithography (SLA), binder jetting and multijet 
modelling (MJM).2 Fused filament fabrication is 
the most common and most affordable 3D desktop  
printing technology available.66–68 In an FFF 3D 
printer, a melted filament of thermoplastic material 
is extruded from a nozzle moving in the x–y plane 
and solidifies upon deposition on a build plate.69 
More recently, 3D metal printing using SLS has 
gained popularity in creating sterilisable surgical 
guides70,71 and customised dental implants.72

Encouraged by its potential, surgeons from a wide 
range of specialities have applied 3D printing to 
their practice such as neurosurgery,73–80 cranio-
maxillofacial surgery,81–88 cardiothoracic surgery,89,90 
orthopaedic surgery,91,92 transplantation,93–95 ear, 
nose and throat surgery96,97 and breast cancer 
surgery.98 Similarly, in reconstructive plastic 
surgery, 3D printing appears most useful for 
preoperative planning, intraoperative guidance, 
medical education and creating custom implants. 
3D-printed bespoke implants overlap significantly 
with 3D bioprinting99–101 and are beyond the scope 
of this article. 

Preoperative planning 

Three-dimensional printing has been most 
commonly used in plastic and reconstructive 
surgery for preoperative planning (see Table 3). 

Autologous breast reconstruction 

In 2014, Gillis and Morris reported the first case 
of a 3D-printed internal mammary artery (IMA) 
and its perforators, a common recipient site in 
free flap breast reconstruction.102 Similarly, Mehta 
and colleagues 3D-printed a multi-colour, multi-
material model of a deep inferior epigastric artery 
(DIEA) and its perforators.103 Despite the benefits, 
both studies revealed the high cost of 3D printing 
(US$400–US$1200 per model), mainly due to having 
to outsource the manufacturing. In addition, 
outsourcing introduces delays of up to six to eight 
weeks that may not be appropriate in some clinical 
settings. As a result, Suarez-Mejias and colleagues 
developed their own 3D modelling software called 
AYRA (Virgen del Rocio University Hospital, Sevilla, 
Spain).104 More recently, Chae and colleagues 
described an affordable and convenient technique 
of 3D printing using free software platforms and 
desktop 3D printers (see Figure 3).51

Soft-tissue modelling 

In a case of lower limb reconstruction, Chae and 
colleagues 3D-printed a model of the soft-tissue 
defect that aided in flap design.63 Similarly, Garcia-
Tutor and colleagues used 3D-printed models of 
large sacral defects to perform qualitative and 
quantitative volumetric assessment.64 Cabalag and 
colleagues fabricated a model of a giant squamous 
cell carcinoma that was useful for planning hemi-
mandibulectomy and determining the length of the 
free fibular flap required.105 

Bony modelling 

Taylor and Lorio 3D-printed, in-house, a negative 
mould of a scaphoid/lunate defect from avascular 
necrosis from which a silicone model was created, 
sterilised and used intraoperatively for flap 
planning.106 In an interesting application, Chae 
and colleagues described their technique of four-
dimensional (4D) printing whereby multiple 
models of the thumb and wrist bones were 3D 
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printed from 4D CT scans to demonstrate their 
dynamic relationship. 

Cartilage modelling 

Three-dimensional assessment of nasal 
cartilaginous defect can be useful for planning 
reconstruction. Visscher and colleagues 
demonstrated that 3D printing alar cartilages using 
MRI showed a mean error of 2.5 mm.107 Interestingly, 
most of the difference was found in 3D printing the 
medial crus but the lateral crus remained highly 
accurate, probably due to its more linear shape. 
Recently, Choi and colleagues 3D-printed a patient-
specific negative mould from CT to create silicone 
nasal implants for augmentative rhinoplasty using 

Table 3. Use of CT/MRI-based 3D-printed haptic models for preoperative planning in plastic and reconstructive surgery 

Clinical application 3D-printed model Imaging 3D modelling 
software

3D printer

DIEP Case report Asymmetrical breast CTA Osirix (Pixmeo, 
Geneva, Switzerland)

Cube 2 (3D Systems, 
Rock Hill, SC, USA)

DIEP Case series 
of 35

Breast CTA AYRA (Virgen del 
Rocio University 
Hospital, Sevilla, Spain)

FFF 

DIEP Cadaver IMA perforator CT Mimics (Materialise 
NV, Leuven, Belgium)

ProJet x60 (3D 
Systems, Rock Hill, SC, 
USA)

DIEP Case report DIEP flap CTA Mimics (Materialise 
NV, Leuven, Belgium)

Objet500 Connex1 
(Stratasys, Eden 
Prairie, MN, USA)

Lower limb soft-
tissue defect

Case report ‘Reverse’ model of the 
defect

CTA Osirix (Pixmeo, 
Geneva, Switzerland)

Cube 2 (3D Systems, 
Rock Hill, SC, USA)

Sacral soft-tissue 
defect 

Case series 
of five

Sacral defect CT/MRI Osirix (Pixmeo, 
Geneva, Switzerland)

Cube 2 (3D Systems, 
Rock Hill, SC, USA)

Hemi-
mandibulectomy

Case report Mandible and giant 
invasive SCC 

CTA 3D Slicer (Surgical 
Planning Laboratory, 
Boston, MA, USA)

MakerBot Z18 
(MakerBot Industries, 
New York, NY, USA)

Bony defect of the 
wrist

Case series 
of three

Bony defect CT MeshMixer (Autodesk, 
San Rafael, CA, USA)

Micro 3D Printer (M3D, 
Fulton, MD, USA)

4D printing of 
thumb movements

Case report Hand 4D CT Osirix (Pixmeo, 
Geneva, Switzerland)

Cube 2 (3D Systems, 
Rock Hill, SC, USA)

Nasal cartilaginous 
defect 
Cadaver 

Human 
volunteer

Nasal alar cartilage MRI GOM Inspect 
(GOM GmbH, 
Braunschweigh, 
Germany)

ZPrinter 250 (3D 
Systems, Rock Hill, SC, 
USA)

Augmentative 
rhinoplasty

Case series 
of seven

Individualised nasal 
implant

CT Rhinoceros (McNeel, 
Seattle, WA, USA)

Cubicon Single 
(Hyvision System, 
Seongnam, South 
Korea

4D = four-dimensional CT = computed tomographic CTA = computed tomographic angiography DIEP = deep inferior epigastric artery perforator SCC 
= squamous cell carcinoma FFF = fused filament fabrication IMA = internal mammary artery. Source: Chae and colleagues,51 Chae and colleagues,63 
Garcia-Tutor and colleagues,64 Gillis and colleagues,102 Mehta and colleagues,103 Suarez-Mejias and colleagues,104 Cabalag and colleagues,105 Taylor 
and colleagues,106 Visscher and colleagues,107 Choi and colleagues,108 Chae and colleagues136

Fig 3. 3D-printed biomodel of breasts in planning reconstruction using 
Cube 2 printer (3D Systems, Rock Hill, SC, USA). Reproduced with 
permission from Chae and colleagues51
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Table 4. Summary of all studies investigating the use of an image-guided, 3D-printed surgical guide in mandibular 
reconstruction with a free fibular flap

Year Patients Source of 
3D printing

Imaging 3D rendering software 3D printers

2017 18 In-house CT AYRA (Virgen del Rocio University Hospital, Sevilla, Spain)
Osirix (Pixmeo, Geneva, Switzerland) 
3D Slicer (Surgical Planning Laboratory, Boston, MA, USA)
MeshMixer (Autodesk, San Rafael, CA, USA) 
Blender (Blender Foundation, Amsterdam, The 
Netherlands)

Objet30 Pro 
(Stratasys, Eden 
Prairie, MN, USA)
Zortrax M200 
(Zortrax, Olsztyn, 
Poland) 

2017 3 Outsourced CT Osirix (Pixmeo, Geneva, Switzerland)
MeshLab (ISTI, Pisa, Italy)
Netfabb (Autodesk, San Rafael, CA, USA)
Blender (Blender Foundation, Amsterdam, The 
Netherlands)

Formiga P 100 
(EOS, Munich, 
Germany)

2017 7 Outsourced CT E3D Online (E3D Online, Oxfordshire, UK) ProJet 3510 HD 
(3D Systems, 
Rock Hill, SC, 
USA)

2016 1 In-house CT Amira (FEI Company, Hillsboro, OR, USA)
Blender (Blender Foundation, Amsterdam, The 
Netherlands)

PolyJet 
(Stratasys, Eden 
Prairie, MN, USA)

2015 1 Outsourced CT SurgiCase CMF (Materialise NV, Leuven, Belgium) SLM

2013 68 Outsourced CT ProPlan CMF (Dupuy Synthes CMF, West Chester, PA, 
USA)

SLA

2013 48 Outsourced CT VoXim (IVS Technology, Chemnitz, Germany) SLA

2013 10 Outsourced CT ProPlan CMF (Dupuy Synthes CMF, West Chester, PA, 
USA)

SLA

2013 38 Outsourced CT SurgiCase CMF (Materialise NV, Leuven, Belgium) SLA

2012 1 Outsourced CT SurgiCase CMF (Materialise NV, Leuven, Belgium)
Rhinoceros (McNeel, Seattle, WA, USA)

M 270 (EOS, 
Munich, 
Germany)

2012 1 In-house CTA AYRA (Virgen del Rocio University Hospital, Sevilla, Spain) FFF 

2012 9 In-house CT Mimics (Materialise NV, Leuven, Belgium) SLA 3500 (3D 
Systems, Rock 
Hill, SC, USA)

2012 15 Outsourced CT Magics (Materialise NV, Leuven, Belgium) SLA

2011 5 Outsourced CT N/A SLS 

2009 3 Outsourced CT Extended Brilliance Workspace (Philips Healthcare) Objet Eden 500V 
(Stratasys, Eden 
Prairie, MN, USA)

2009 1 Outsourced CT SurgiCase CMF (Materialise NV, Leuven, Belgium) SLS nylon
CTA = computed tomographic angiography SLM = selective laser melting SLA = stereolithography SLS = selective laser sintering FFF = fused filament 
fabrication. Source: Cohen and colleagues,66 Bosc and colleagues,109 Ganry and colleagues,110 Liang and colleagues,111 Mottini and colleagues,112 
Schouman and colleagues,113 Seruya and colleagues,114 Rohner and colleagues,115 Saad and colleagues,116 Hanasono and colleagues,117 Ciocca and 
colleagues,118 Infante-Cossio and colleagues,119 Zheng and colleagues,120 Hou and colleagues,121 Antony and colleagues,122 Leiggener and colleagues123

in-house software108 and demonstrated a mean 
accuracy of 0.07 mm (0.17%) with no complications. 

Intraoperative guidance 

Use of 3D-printed fibular osteotomy guides for 
mandibular reconstruction has been studied 
extensively (see Table 4).66,109–123 Investigators 
have demonstrated their accuracy of up to 0.1–
0.4 mm.66,110–112,117 Moreover, they can significantly 

reduce flap ischaemia time (120 minutes vs 170 
minutes, p = 0.004)114 and total operating time (8.8 
hours vs 10.5 hours, p = 0.0006).117 

Medical education

Educating junior surgical trainees and medical 
students about 3D pathological defects such as 
cleft lip and palate without hands-on interaction 
and demonstration is notoriously difficult. As 
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the supply of cadavers for medical education 
continues to dwindle due to rising maintenance 
costs124 and concerns regarding occupational 
health and safety,125 the use of 3D-printed 
biomodels has become popular.126,127 Zheng 
and colleagues have used 3D-printed negative 
moulds to fabricate soft silicone models of cleft 
lip and palate on which students directly perform 
cheiloplasty.128 Subsequently, in a randomised 
clinical trial of 67 medical students, AlAli and 
colleagues demonstrated that the knowledge 
gained using 3D-printed models of cleft lip and 
palate was significantly higher than when using 
standard slide presentations (44.65% vs 32.16%, 
p = 0.038).129 Similarly, clinicians have 3D 
printed negative moulds of paediatric microtia for 
practical demonstration.130

Conclusion
Many studies have explored the application of 
3D-rendered conventional imaging modalities for 
3D perforator mapping, 3D volumetric analysis 
and 3D printing. 

There are numerous free, open-source software 
platforms that are capable of 3D image rendering, 
such as 3D Slicer and OsiriX. For perforator 
mapping, most plastic surgeons rely on CTA- or 
MRA-based 3D reconstructed images. Current 3D 
volumetric analysis technologies remain labour-
intensive and are yet to be automatised. 

Three dimensional printing has been most 
commonly used in plastic and reconstructive 
surgery for preoperative planning in mandibular 
reconstruction with a free fibular flap. The majority 
of these studies have a lower level of evidence, 
consisting of case series and reports. Furthermore, 
there is a lack of comprehensive review of all 
established 3D imaging and printing techniques in 
a language suitable for clinicians.
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