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Section: Technology and imaging

Abstract
Background: In the second of a two-part series, we 
evaluate emerging three-dimensional (3D) imaging 
and printing techniques based on computed 
tomography angiography (CT) and magnetic 
resonance angiography (MRA) for use in plastic and 
reconstructive surgery. 

Method: A review of the published English literature 
dating from 1950 to 2017 was taken using databases 
such as PubMed, MEDLINE®, Web of Science and 
EMBASE.

Results: Image-guided navigation systems using 
fiducial markers have demonstrated utility in 
numerous surgical disciplines, including perforator-
based flap surgery. However, these systems have 
largely been superseded by augmented reality (AR) 
and virtual reality (VR) technologies with superior 
convenience and speed. With the added benefit of 
tactile feedback, holograms also appear promising 
but have yet to be developed beyond the prototypic 
stage. Aided by a growing volume of digitalised 
clinical data, machine learning (ML) poses significant 
benefits for future image-based decision-making 
processes.

Conclusion: Most studies of image-guided 
navigation systems, AR, VR, holograms and ML have 
been presented in small case series and they remain 
to be analysed using outcomes-based validation 
studies. However, together they illustrate an exciting 
future where clinicians will be armed with intuitive 
technologies for surgical planning and guidance. 

Keywords: image processing, plastic and reconstructive 
surgery, augmented reality, virtual reality, holograms
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Introduction 
A plethora of imaging modalities has been 
used in plastic and reconstructive surgery 
to aid preoperative planning, intraoperative 
guidance and medical education.1,2 Conventional 
tomographic imaging modalities such as computed 
tomography angiography (CTA) and magnetic 
resonance angiography (MRA) remain relatively 
affordable and commonly accessible.3–8 As a result, 
clinicians have investigated novel technologies to 
expand their use such as image-guided navigation 
systems, augmented reality (AR), virtual reality 
(VR), holograms and machine learning (ML). 

In the second of a two-part series, we evaluate 
emerging 3D imaging and printing techniques 
based on CTA and MRI. 

Method
We reviewed the published English literature from 
1950 to 2017 from well-established databases such 
as PubMed, MEDLINE®, Web of Science and EMBASE. 
We included all studies that analyse 3D imaging 
and printing techniques used in surgery, especially 
plastic and reconstructive surgery. We used search 
terms such as ‘3D imaging’, ‘CTA’, ‘MRA’, ‘3D image 
software’, ‘simulation surgery’, ‘stereotactic 
navigation-assisted surgery’, ‘augmented reality’, 
‘virtual reality’, ‘hologram’, ‘automation’, ‘machine 
learning’, ‘artificial intelligence’, ‘preoperative 
planning’, ‘intraoperative guidance’, ‘education’, 
‘training’ and ‘customised implant’. We also 
retrieved secondary references found through 
bibliographical linkages. 

Through our literature review, we qualitatively 
analysed hardware and software programs used 
for image-guided navigation-assisted surgery, 
AR, VR, holograms and ML, evaluating their 
cost (affordability arbitrarily being defined as 
costing less than AU$500) and up-to-date clinical 
applications. Papers were assessed using Oxford 
Centre for Evidence-Based Medicine levels of 
evidence.9 

Results and discussion
Recent technological advances have led to the 
use of image-guided navigation systems, AR, VR, 
holograms and ML in surgical planning. 

Image-guided navigation systems 
An image-guided navigation system tracks surgical 
instruments in real time and matches their location 
to the preoperative CTA and MRI for viewing them 
intraoperatively.10,11 The earliest system used 
external stereotactic frames fixed to the skull 
or other bony landmarks.12 Modern frameless 
navigation systems using fiducial markers,13 
surface landmarks14 and surface-matching 
laser registration15 are faster, safer and more 
convenient.16 As a result, stereotactic navigation is 
used routinely in neurosurgery,17 spinal surgery,18 
orthopaedic surgery,19 craniofacial surgery,20 
ear, nose and throat surgery21 and endovascular 
surgery.22

In plastic surgery, Rozen and colleagues 
demonstrated that registration systems using 
fiducial markers—six to seven in deep inferior 
epigastric artery perforator (DIEP) and nine to 
10 in anterolateral thigh (ALT) flaps—are reliable 
for viewing CTA-derived perforator anatomy.23–26 
Durden and colleagues developed a novel 
electrocautery pen attached to a stereotactic frame 
and reported a global error of 2.1–2.4 mm during 
DIEP flap harvest.27 However, the longer, heavier 
diathermy handle may compromise surgical 
dexterity and requires its large reference frame to 
be fixed to the operating table. 

In an interesting application, Chao and colleagues 
developed a robot (KUKA Lightweight Robot; 
KUKA, Augsburg, Germany) that can perform 
osteotomy on a 3D-printed acrylic fibula with the 
aid of stereotactic navigation.28 Out of 18 robotic 
osteotomies executed, it reported average 
linear variation of 1.3 ± 0.4 mm and angular 
variation of 4.2 ± 1.7  degrees. It remains to be 
seen how this can be translated in vivo but its 
potential is intriguing. 

Overall, navigation systems are seldom used in soft-
tissue surgery due to lack of reliable bony landmarks 
and have been superseded by augmented and 
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Table 1. Summary of image-guided navigation systems used in reconstructive plastic surgery 

Product Manufacturer Free Open-
source

Clinical application

BrainLAB BrainLAB AG (Feldkirchen, Germany) No No DIEP, ALT, DCIA

StealthStation Medtronic Inc. (Minneapolis, MN, USA) No No DIEP

KUKA Lightweight 
Robot

KUKA (Augsberg, Germany) No No Free fibular flap

DIEP = deep inferior epigastric artery perforator ALT = anterolateral thigh DCIA = deep circumflex iliac artery. Source: Rozen and colleagues,23–25 
Ting and colleagues,26 Durden and colleagues,27 and Chao and colleagues28

Table 2. Summary of augmented reality devices used in reconstructive plastic surgery 

Product Manufacturer Type/function Affordability† Clinical application

Hardware

PicoPix PPX2480 Koninklijke Philips NV 
(Amsterdam, The Netherlands)

Projector Yes DIEP, Inguinal lymph 
nodes

PRJ-5 Sanwa Electronic (Osaka, Japan) Projector Yes DIEP

nVisor ST60 NVIS Inc. (Reston, VA, USA) Head-mounted 
display

No Thoracodorsal artery 
perforator flap

Projective Imaging 
System

University Science and 
Technology of China (Anhui, 
People’s Republic of China)

Projector N/A Skin flap perfusion

Google Glass Alphabet (Mountain View, CA, 
USA)

Head-mounted 
display

No Rhinoplasty

Software 

VitreaAdvanced fX 
Workstation

Vital Images (Minnetonka, MN, 
USA)

3D rendering No DIEP, Inguinal lymph 
nodes

OsiriX Pixmeo (Geneva, Switzerland) 3D rendering Yes DIEP

ARToolKit ARToolworks, (Seattle, WA, USA) AR virtual 
modelling

Yes Thoracodorsal artery 
perforator flap

Bespoke software 
written in OpenCV

University Science and 
Technology of China (Anhui, 
People’s Republic of China)

AR virtual 
modelling 

N/A Skin flap perfusion

†Affordability is determined by whether the hardware or software costs less than AU$500 outright or per year in subscription, or is free.
DIEP = deep inferior epigastric artery perforator N/A = not available. Source: Hummelink and colleagues,43 Hummelink and colleagues,44 Hummelink 
and colleagues,45 Sotsuka and colleagues,46 Jiang,47 Gan and colleagues,48 Peregrin52

virtual reality platforms (see Table 1). 

Augmented reality, virtual reality and 
holograms

In comparison with two-dimensional (2D) imaging 
modalities, AR, VR and holograms provide 
natural 3D visual perception and haptic feedback 
respectively. First described by Boeing engineers 
Caudell and Mizell in 1992,29 in AR real-time 
virtual images are superimposed on the view of 
one’s real environment.30 These images can be 
displayed directly onto an object in real life, also 
known as the projection method, or indirectly onto 
a portable device, such as a head-mount display or 
smartphone.31 In contrast, in VR, one’s entire visual 

perception is completely shrouded by a computer-
simulated graphics environment.30 

Virtual reality 

Virtual reality is an attractive platform on which 
to generate anatomically accurate surgical 
simulations in order to perform preoperative 
planning or medical training and enable visual 
communication with multidisciplinary team 
members and patients.32 Arora and colleagues have 
shown that mental practice using VR simulators 
can significantly improve the surgical skills of 
novice surgeons in laparoscopic cholecystectomy 
(p <  0.05).33 However, currently most VR surgical 
simulators are pre-programmed, offer only limited 
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interactions and exhibit such low image quality 
that it impedes the immersive experience.34–36 

Augmented reality 

Augmented reality produces an extended ‘layer’ 
or field of view that leads to intuitive real-
time 3D visualisation of anatomical structures. 
Currently, most AR devices are expensive, slow 
and complicated. Nonetheless, their potential 
application has been explored in numerous surgical 
specialities including calibrating stereotactic 
instruments in neurosurgery,37 fashioning 
craniofacial implants in maxillofacial surgery,38 
enhancing visualisation in laparoscopic surgery39 
and sentinel lymph node biopsy in head and neck 
cancer40 and breast cancer surgery.41 In plastic 
and reconstructive surgery, AR appears to be most 
useful for preoperative planning, intraoperative 
image navigation and surgical training (see Table 2 
and Figure 1).

Hummelink and colleagues described a projection-
based direct AR technique using an affordable 
hand-held projector and proprietary software 
suites in three case series.43–45 In the first series, 
they projected a 3D-reconstructed CTA image of 
DIEPs onto the abdominal wall and demonstrated 
its high accuracy (84.3 vs 56.9%, p = 0.03).45 In the 
following series, they extended this application by 
including the location of inguinal lymph nodes.44 In 
the latest series, they calculated the required flap 
volume and dimensions using 3D surface scanning 
and projected the combined 3D-reconstructed 
image to aid flap design and planning.43 One of 
the major limitations of this technique is operator 
dependence, since the projector must be held 
steadily above the patient at the correct height 
without significant tremor. Sotsuka and colleagues 
attempted to resolve this by mounting the projector 
onto a fixed handstand46 but its reliability remains 
to be seen. 

In animal studies, Jiang and colleagues developed 
a highly accurate (3.5 mm) direct AR technique 
for raising thoracodorsal artery perforator flaps 
that does, however, require invasive positioning 
of the image registration system via percutaneous 
screws.47 Gan and colleagues developed a compact 
direct AR technique consisting of a mini-projector 
and a near-infrared camera to detect skin perfusion 
after tail vein injection of ICG dye.48 However, their 
system is too small for clinical application. 

Recent advances in AR and VR

Conventional AR devices require large stereoscopic 
towers for image registration and viewing that are 
inconvenient and occupy space in the operating 
theatre. However, there are now wearable devices 
that can carry sufficient computing power for AR 
and several investigators have developed bespoke 
wearable devices for surgical application.49,50 Mela 
and colleagues report a device capable of projecting 
fluorescent angiography, 2D ultrasound and 3D 
CTA with depth perception in a compact, user-
friendly interface.49 Similarly, Liu and colleagues 
developed a compact, wireless, battery-operated 
device for hands-free viewing of fluorescent 
angiography for sentinel lymph node biopsy and 
tumour cell localisation.50 The latest and most 

Fig 1. Projection of ALT perforators preoperatively using CTA-based 
direct augmented reality performed using OsiriX software (Pixmeo) and 
Philips PicoPix pocket projector (Koninklijke Philips NV, Amsterdam, 
The Netherlands). The purple line delineates traditional anatomical 
landmarks. The mark on the line correlated exactly with the location of 
the ALT perforator. ALT: anterolateral thigh perforator CTA: computed 
tomographic angiography
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Fig 2. Evolution of 3D imaging and printing techniques from 3D-reconstructed images and a basic 3D-printed model (A1–4) to clinically useful 3D 
printing applications in perforator-based breast reconstructive surgery (B1–6) and advanced image analysis technology such as augmented reality and 
CAVE2TM facility (C1–6)

(A1) 2D-reconstructed CTA image of the abdominal wall vasculature. (A2) 3D-reconstructed CTA image of the same patient in A1. (A3) Segmented 
image of the DIEA of the same patient in A1. (A4) 3D-printed model of the DIEA in A3

(B1) Segmented image of the abdominal wall and DIEA that spurned the idea of creating a template for preoperative planning. (B2) A patient-specific 
bespoke ‘DIEP template’ is 3D printed and placed on the patient’s abdominal wall to help locate the DIEA perforator and its pedicle. (B3) This 
information is used for flap design. As 3D printing techniques advanced, we were able to create both a standard DIEP template (B4) and a 
‘perforasome template’ (B5), which can additionally identify each perforasome (B6)

(C1–6) Augmented reality can significantly reduce the time and labour cost involved in 3D printing by enabling direct viewing and real-time interaction 
with the image data. (C1) Our published direct ARC (augmented reality CTA) technique set-up using a hand-held projector demonstrating 2D-
reconstructed (C2) and 3D-reconstructed (C3) images on the patient’s abdomen. As technology advances, we envision that greater software processing 
power will enable display of greater anatomical information, such as the intramuscular course of a DIEP (C4) and translation into a user-friendly, 
interactive platform for clinicians (C5). (C6) The latest CAVE2TM facility (Monash University, Clayton, Victoria, Australia) housing 84-million pixel 
stereoscopic display with powerful real-time motion tracking capability will enable interactive, seamless visualisation of relevant anatomy for 
preoperative planning and collaborative discussion

CTA: computed tomographic angiography DIEA: deep inferior epigastric artery DIEP: deep inferior epigastric artery perforator. Reprinted with 
permission, Chae and colleagues78–80
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promising wearable AR device was Google Glass 
(Alphabet, Mountain View, CA, USA). In plastic 
and reconstructive surgery, clinicians reported 
its benefits for viewing images and recording 
videos.51–54 Unfortunately, in 2015 Google Glass was 
taken off the market due to persistent software 
bugs and privacy concerns.55

Recently, researchers in Australia have developed 
a high-resolution, immersive 3D AR and VR 
environment using integrated supercomputers 
and multiple projectors with a cylindrical 
matrix of stereoscopic panels.56 This bespoke 
CAVE2TM (Monash University, Clayton, Victoria, 
Australia) consists of 80 high-resolution, stereo-
capable displays producing an 8-metre diameter, 
320-degree panoramic view (see Figure 2). Medical 
images can be processed relatively easily by a 
dedicated laboratory technician and the clinician 
can view them realistically in a 3D manner as if 
they are ‘walking through’ the anatomy. Currently, 
the set-up is too large to be portable and it is also 
expensive, but as lithium-ion batteries improve and 
technology becomes more mobile, the potential of 
such technology being transferred to a portable 
head-mounted display appears enticing. 

Holograms 

A hologram exhibits reflective auto-stereoscopic 
(that is, no wearable device) 3D visuals that 
contain hogels (holographic elements instead of 
pixels or voxels), where each hogel contains up to 
one million different perspective views. Hackett 
and colleagues evaluated the role of holograms 
in teaching cardiac anatomy to 19 volunteers (10 
intervention versus nine control) and found a 
superior overall test performance after using it 
(89% vs 68%, p < 0.05).57 Furthermore, volunteers 
demonstrated a trend in lower mental effort 
required in learning (4.9 vs 6.0, p = 0.16). Recently, 
Makino and colleagues have added tactile feedback 
to holograms by using concentrated ultrasonic 
energy.58 However, this technology has yet to 
advance beyond the prototypic stage. 

Machine learning 

Machine learning is a branch of artificial 
intelligence that uses a computer algorithm to 

aid clinical decisionmaking and to predict clinical 
outcomes based on knowledge acquisition from 
data mining of historical examples without explicit 
programming.59–61 The algorithm statistically 
analyses each hypothesis, compares multiple 
combinations and yields data models that are 
descriptive or predictive in nature. Machine 
learning has already transformed popular search 
engines such as Google (Google LLC, Mountain 
View, California, USA)62 and speech recognition 
software on smartphones such as Siri (Apple Inc, 
Cupertino, California, USA).63 Owing to an ever-
growing volume of digitalised clinical data, ML 
presents a superior form of data interpretation to 
the traditional statistical methods.64

Machine learning techniques can be classified 
according to their mathematical structure: 
predictive, where learning is supervised by 
using pre-labelled data sets;65 descriptive, where 
learning is unsupervised and similar data points 
are clustered;66 and reinforcement, where ideal 
behaviour is determined by computer based on a 
simple reward feedback system on their actions.67 
Evidently, it is difficult for non-statistically inclined 
clinical investigators to analyse how an algorithm 
has reached its conclusion.68,69 As a result, when 
using ML, clinicians need to collaborate with data 
scientists who can accurately evaluate the validity 
of the output obtained.70 

In the last decade, investigators have applied ML to 
improve clinical challenges in various fields within 
plastic surgery as a diagnostic and predictive tool. 
In melanoma detection, Safran and colleagues 
conducted a systematic review of 50 different ML 
screening techniques and found a mean sensitivity 
of 87.60 per cent (95% confidence interval: 72.72–
100) and a mean specificity of 83.54 per cent (60.92–
100).71 Encouragingly, there was no statistically 
significant difference between ML and dermoscopy 
examination by experienced professionals.72 In 
craniofacial surgery, Mendoza and colleagues 
used a statistical shape model to help diagnose 
non-syndromic craniosynostosis from CT.73 The 
algorithm yielded a sensitivity of 92.3 per cent and 
a specificity of 98.9 per cent, similar to the trained 
radiologists. 
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In burns surgery, Yeong and colleagues developed an 
ML algorithm to analyse reflectance spectrometry 
images and assess burns area and depth.74 They 
demonstrated an average predictive accuracy of 86 
per cent. In free flap reconstructions, Kiranantawat 
and colleagues developed an ML-based smartphone 
application, SilpaRamanitor, that can predict 
vascular compromise from 2D photographs with 
an overall sensitivity of 94 per cent, a specificity 
of 98 per cent and an accuracy of 95 per cent.75 In 
hand surgery, Conforth and colleagues developed 
an algorithm capable of estimating the likelihood 
of tissue-engineered peripheral nerve graft take 
at 92.59 per cent accuracy.76 In aesthetic surgery, 
Gunes and colleagues developed an automated 
classifier of facial beauty by analysing 165 images 
of attractive female faces as graded by human 
referees.77 

Conclusion
Most studies of image-guided navigation systems, 
AR, VR, holograms and ML have been presented in 
small case series and they remain to be analysed 
using outcomes-based validation studies. Image-
guided navigation systems are used less frequently 
in soft tissue surgery, in comparison with 
orthopaedic and neurosurgery, due to unreliable 
landmarks being available for image registration. 
Augmented reality platforms such as CAVE2TM 
which leads to intuitive real-time 3D visualisation 
of anatomical structures, appear promising. 
Machine learning is a rapidly emerging, disruptive 
technology that may become highly useful as a 
diagnostic and predictive tool. Together, they 
illustrate an exciting future where clinicians will 
be armed with numerous intuitive technologies for 
surgical planning and guidance. 
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