An update on the management of nerve gaps Editorial

Main Article Content

William Alexander https://orcid.org/0000-0001-5304-6844
Christopher Coombs

Keywords

autografts, allografts, nerve tissue, reconstructive surgical procedures

Abstract

No abstract required

Abstract 89 | PDF Downloads 87 HTML Downloads 73

References

1. Highet WB, Sanders FK. The effects of stretching nerves after suture. BJS. 1943;30(120):355–369. https://doi.org/10.1002/bjs.18003012012
2. Kalomiri DE, Soucacos PN, Beris AE. Nerve grafting in peripheral nerve microsurgery of the upper extremity. Microsurg. 1994;15(7):506–11. https://doi.org/10.1002/micr.1920150714 PMid:7968483
3. Moore AM, Wagner IJ, Fox IK. Principles of nerve repair in complex wounds of the upper extremity. Semin Plast Surg. 2015;29(1):40–47. https://doi.org/10.1055/s-0035-1544169 PMid:25685102 PMCid:PMC4317271
4. Seidel JA, Koenig R, Antoniadis G, Richter HP, Kretschmer T. Surgical treatment of traumatic peroneal nerve lesions. Neurosurg. 2008;62(3):664–673; discussion 664-673. https://doi.org/10.1227/01.neu.0000317315.48612.b1 PMid:18425013
5. Roberts SE, Thibaudeau S, Burrell JC, Zager EL, Cullen DK, Levin LS. To reverse or not to reverse? A systematic review of autograft polarity on functional outcomes following peripheral nerve repair surgery. Microsurg 2017;37(2):169–174. https://doi.org/10.1002/micr.30133 PMid:27935644
6. Brushart TM. Motor axons preferentially reinnervate motor pathways. J Neurosci. 1993;13(6):2730–2738. https://doi.org/10.1523/JNEUROSCI.13-06-02730.1993 PMid:8501535 PMCid:PMC6576505
7. Brushart TM, Gerber J, Kessens P, Chen YG, Royall RM. Contributions of pathway and neuron to preferential motor reinnervation. J Neurosci. 1998;18(21):8674–8681. https://doi.org/10.1523/JNEUROSCI.18-21-08674.1998 PMid:9786974 PMCid:PMC6793544
8. Moradzadeh A, Borschel GH, Luciano JP, Whitlock EL, Hayashi A, Hunter DA, Mackinnon SE. The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol 2008;212(2):370–376. https://doi.org/10.1016/j.expneurol.2008.04.012 PMid:18550053 PMCid:PMC2761727
9. Bassilios Habre S, Bond G, Jing XL, Kostopoulos E, Wallace RD, Konofaos P. The surgical management of nerve gaps: present and future. Ann Plast Surg. 2018;80(3):252–261. https://doi.org/10.1097/SAP.0000000000001252 PMid:29166306
10. Willand MP, Nguyen MA, Borschel GH, Gordon T. Electrical stimulation to promote peripheral nerve regeneration. Neurorehabil Neural Repair. 2016;30(5):490–496. https://doi.org/10.1177/1545968315604399 PMid:26359343
11. Catapano J, Demsey DR, Ho ES, Zuker RM, Borschel GH. Cross-face nerve grafting with infraorbital nerve pathway protection: anatomic and histomorphometric feasibility study. Plast Reconstr Surg Glob Open. 2016;4(9):e1037. https://doi.org/10.1097/GOX.0000000000001037 PMid:27757349 PMCid:PMC5055015
12. Gordon T, Eva P, Borschel GH. Delayed peripheral nerve repair: methods, including surgical 'cross-bridging' to promote nerve regeneration. Neural Reg Res 2015;10(10):1540–1544. https://doi.org/10.4103/1673-5374.167747 PMid:26692833 PMCid:PMC4660729
13. Al-Majed AA, Brushart TM, Gordon T. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci. 2000;12(12):4381–4390. https://doi.org/10.1111/j.1460-9568.2000.01341.x https://doi.org/10.1046/j.1460-9568.2000.01341.x PMid:11122348
14. Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 2000;20(7):2602–2608. https://doi.org/10.1523/JNEUROSCI.20-07-02602.2000 PMid:10729340 PMCid:PMC6772244
15. Al-Majed AA, Tam SL, Gordon T. Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol. 2004;24(3):379–402. https://doi.org/10.1023/B:CEMN.0000022770.66463.f7 PMid:15206821
16. Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VM. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol. 2007;205(2):347–359. https://doi.org/10.1016/j.expneurol.2007.01.040 PMid:17428474
17. Gordon T, Amirjani N, Edwards DC, Chan KM. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol. 2010;223(1):192–202. https://doi.org/10.1016/j.expneurol.2009.09.020 PMid:19800329
18. Kubiak CA, Kung TA, Brown DL, Cederna PS, Kemp SWP. State-of-the-art techniques in treating peripheral nerve injury. Plast Reconstr Surg. 2018;141(3):702–710. https://doi.org/10.1097/PRS.0000000000004121 PMid:29140901
19. Pockett S, Gavin RM. Acceleration of peripheral nerve regeneration after crush injury in rat. Neurosci Lett. 1985;59(2):221–224. https://doi.org/10.1016/0304-3940(85)90203-4
20. Tuncel U, Kostakoglu N, Turan A, Cevik B, Cayli S, Demir O, Elmas C. The effect of autologous fat graft with different surgical repair methods on nerve regeneration in a rat sciatic nerve defect model. Plast Reconstr Surg. 2015;136(6):1181–1191. https://doi.org/10.1097/PRS.0000000000001822 PMid:26273733
21. Saheb-Al-Zamani M, Yan Y, Farber SJ, Hunter DA, Newton P, Wood MD, Stewart SA, Johnson PJ, Mackinnon SE. Limited regeneration in long acellular nerve allografts is associated with increased Schwann cell senescence. Expl Neurol. 2013;247:165–177. https://doi.org/10.1016/j.expneurol.2013.04.011 PMid:23644284 PMCid:PMC3863361
22. Gordon T. Electrical stimulation to enhance axon regeneration after peripheral nerve injuries in animal models and humans. Neurotherapeutics. 2016;13(2):295–310. https://doi.org/10.1007/s13311-015-0415-1 PMid:26754579 PMCid:PMC4824030
23. Poppler LH, Ee X, Schellhardt L, Hoben GM, Pan D, Hunter DA, Yan Y, Moore AM, Snyder-Warwick AK, Stewart SA, Mackinnon SE, Wood MD. Axonal growth arrests after an increased accumulation of schwann cells expressing senescence markers and stromal cells in acellular nerve allografts. Tissue Engineering. Part A. 2016;22(13-14):949–961. https://doi.org/10.1089/ten.tea.2016.0003 PMid:27297909 PMCid:PMC4948214
24. Kalantarian B, Rice DC, Tiangco DA, Terzis JK. Gains and losses of the XII-VII component of the ‘baby-sitter’ procedure: a morphometric analysis. J Reconstr Microsurg. 1998;14(7):459–471. https://doi.org/10.1055/s-2007-1000208 PMid:9819092
25. Letievant E. Traite des sections nerveuses. Paris, France: JB Bailliere et Fils, 1873.
26. Ballance CA, Ballance HA, Stewart P. Remarks on the operative treatment of chronic facial palsy of peripheral origin. BMJ. 1903;1(2209):1009–1013. https://doi.org/10.1136/bmj.1.2209.1009 PMid:20760866 PMCid:PMC2514031
27. Pannucci C, Myckatyn TM, Mackinnon SE, Hayashi A. End-to-side nerve repair: review of the literature. Restor Neurol Neuros. 2007;25(1):45–63.
28. Viterbo F, Amr AH, Stipp EJ, Reis FJ. End-to-side neurorrhaphy: past, present, and future. Plast Reconstr Surg. 2009;124(6 Suppl):e351–358. https://doi.org/10.1097/PRS.0b013e3181bf8471 PMid:19952703
29. Konofaos P, Bassilios Habre S, Wallace RD. End-to-side nerve repair: current concepts and future perspectives. Ann Plast Surg. 2018;81(6):736–740. https://doi.org/10.1097/SAP.0000000000001663 PMid:30362965
30. Myckatyn TM, Mackinnon SE. A review of research endeavors to optimize peripheral nerve reconstruction. Neurol Res. 2004;26(2):124–138. https://doi.org/10.1179/016164104225013743 PMid:15072631
31. Reece JC, Dangerfield DC, Coombs CJ. End-to-side somatic-to-autonomic nerve grafting to restore erectile function and improve quality of life after radical prostatectomy. Eur Urol. 2019;76(2):189–196. https://doi.org/10.1016/j.eururo.2019.03.036 PMid:30955973
32. Gluck T. Ueber neuroplastik auf dem wege der transplantation. Arch Klin Chir. 1880;25:606-616.
33. Bunger O. Degenerations- und regenerationsvorga?nge am nerven nach verletzungen. Beitr Pathol Anat Al 1989;10:312–393.
34. Kostopoulos E, Konofaos P, Frazer M, Terzis JK. Tubulization techniques in brachial plexus surgery in an animal model for long-nerve defects (40 mm): a pilot study. Ann Plast Surg. 2010;64(5):614–621. https://doi.org/10.1097/SAP.0b013e3181da4369 PMid:20395801
35. Mackinnon SE, Dellon AL. A study of nerve regeneration across synthetic (Maxon) and biologic (collagen) nerve conduits for nerve gaps up to 5 cm in the primate. J Reconstr Microsurg. 1990;6(2):117–121. https://doi.org/10.1055/s-2007-1006810 PMid:2352218
36. Mligiliche N, Kitada M, Ide C. Grafting of detergent-denatured skeletal muscles provides effective conduits for extension of regenerating axons in the rat sciatic nerve. Arch Hist Cytol. 2001;64(1):29–36. https://doi.org/10.1679/aohc.64.29 PMid:11310502
37. Chiu DT, Strauch B. A prospective clinical evaluation of autogenous vein grafts used as a nerve conduit for distal sensory nerve defects of 3 cm or less. Plast Reconstr Surg. 1990;86(5):928–934. https://doi.org/10.1097/00006534-199011000-00015 PMid:2236318
38. Strauch B, Ferder M, Lovelle-Allen S, Moore K, Kim DJ, Llena J. Determining the maximal length of a vein conduit used as an interposition graft for nerve regeneration. J Reconstr Microsurg. 1996;12(8):521–527. https://doi.org/10.1055/s-2007-1006624 PMid:8951120
39. Strauch B, Rodriguez DM, Diaz J, Yu HL, Kaplan G, Weinstein DE. Autologous schwann cells drive regeneration through a 6-cm autogenous venous nerve conduit. J Reconstr Microsurg. 2001;17(8):589–595; discussion 596-587. https://doi.org/10.1055/s-2001-18812 PMid:11740653
40. Radtke C, Allmeling C, Waldmann KH, Reimers K, Thies K, Schenk HC, Hilmer A, Guggenheim M, Brandes G, Vogt PM. Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. Plos One. 2011;6(2):e16990. https://doi.org/10.1371/journal.pone.0016990 PMid:21364921 PMCid:PMC3045382
41. Yan Y, Wood MD, Hunter DA, Ee X, Mackinnon SE, Moore AM. The effect of short nerve grafts in series on axonal regeneration across isografts or acellular nerve allografts. J Hand Surg Am. 2016;41(6):e113–121. https://doi.org/10.1016/j.jhsa.2016.01.009 PMid:26880495
42. Tajdaran K, Gordon T, Wood MD, Shoichet MS, Borschel GH. A glial cell line-derived neurotrophic factor delivery system enhances nerve regeneration across acellular nerve allografts. Acta Biomater. 2016;29:62–70. https://doi.org/10.1016/j.actbio.2015.10.001 PMid:26441127
43. Domeshek LF, Novak CB, Patterson MM, Hasak JM, Yee A, Kahn LC, Mackinnon SE. Nerve transfers—a paradigm shift in the reconstructive ladder. Plast Reconstr Surg Glob Open. 2019:1. https://doi.org/10.1097/GOX.0000000000002290 PMid:31624686 PMCid:PMC6635215
44. Meek MF, Coert JH, Robinson PH. Poor results after nerve grafting in the upper extremity: Quo vadis? Microsurg. 2005;25(5):396–402. https://doi.org/10.1002/micr.20137 PMid:16032723
45. Seruya M, Shen SH, Fuzzard S, Coombs CJ, McCombe DB, Johnstone BR. Spinal accessory nerve transfer outperforms cervical root grafting for suprascapular nerve reconstruction in neonatal brachial plexus palsy. Plast Reconstr Surg. 2015;135(5):1431–1438. https://doi.org/10.1097/PRS.0000000000001096 PMid:25835244
46. Ward PJ, Jones LN, Mulligan A, Goolsby W, Wilhelm JC, English AW. Optically-induced neuronal activity is sufficient to promote functional motor axon regeneration in vivo. Plos One. 2016;11(5):e0154243. https://doi.org/10.1371/journal.pone.0154243 PMid:27152611 PMCid:PMC4859548